Identification of Novel Saccharomyces cerevisiae Proteins with Nuclear Export Activity: Cell Cycle-Regulated Transcription Factor Ace2p Shows Cell Cycle-Independent Nucleocytoplasmic Shuttling

Author:

Jensen Torben Heick1,Neville Megan1,Rain Jean Christophe2,McCarthy Terri1,Legrain Pierre2,Rosbash Michael1

Affiliation:

1. Howard Hughes Medical Institute, Department of Biology, Brandeis University, Waltham, Massachusetts 02454,1 and

2. Unité de Génétique des Interactions Macromoléculaires- CNRS URA1300, Institut Pasteur, 75524 Paris Cedex 15, France2

Abstract

ABSTRACT Nuclear export of proteins containing leucine-rich nuclear export signals (NESs) is mediated by the NES receptor CRM1/Crm1p. We have carried out a yeast two-hybrid screen with Crm1p as a bait. The Crm1p-interacting clones were subscreened for nuclear export activity in a visual assay utilizing the Crm1p-inhibitor leptomycin B (LMB). This approach identified three Saccharomyces cerevisiae proteins not previously known to have nuclear export activity. These proteins are the 5′ RNA triphosphatase Ctl1p, the cell cycle-regulated transcription factor Ace2p, and a protein encoded by the previously uncharacterized open reading frame YDR499W. Mutagenesis analysis show that YDR499Wp contains an NES that conforms to the consensus sequence for leucine-rich NESs. Mutagenesis of Ctl1p and Ace2p were unable to identify specific NES residues. However, a 29-amino-acid region of Ace2p, rich in hydrophobic residues, contains nuclear export activity. Ace2p accumulates in the nucleus at the end of mitosis and activates early-G 1 -specific genes. We now provide evidence that Ace2p is nuclear not only in late M-early G 1 but also during other stages of the cell cycle. This feature of Ace2p localization explains its ability to activate genes such as CUP1 , which are not expressed in a cell cycle-dependent manner.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3