Parallel pathways of gene regulation: homologous regulators SWI5 and ACE2 differentially control transcription of HO and chitinase.

Author:

Dohrmann P R,Butler G,Tamai K,Dorland S,Greene J R,Thiele D J,Stillman D J

Abstract

Two independent pathways of transcriptional regulation that show functional homology have been identified in yeast. It has been demonstrated previously that SWI5 encodes a zinc finger DNA-binding protein whose transcription and cellular localization both are cell cycle regulated. We show that ACE2, whose zinc finger region is nearly identical to that of SWI5, shows patterns of cell cycle-regulated transcription and nuclear localization similar to those seen previously for SWI5. Despite their similarities, SWI5 and ACE2 function in separate pathways of transcriptional regulation. SWI5 is a transcriptional activator of the HO endonuclease gene, whereas ACE2 is not. In contrast, ACE2 is a transcriptional activator of the CTS1 gene (which encodes chitinase), whereas SWI5 is not. An additional parallel between the SWI5/HO pathway and the ACE2/CTS1 pathway is that HO and CTS1 both are cell cycle regulated in the same way, and HO and CTS1 both require the SWI4 and SWI6 transcriptional activators. Overproduction of either SWI5 or ACE2 permits transcriptional activation of the target gene from the other pathway, suggesting that the DNA-binding proteins are capable of binding in vivo to promoters that they do not usually activate. Chimeric SWI5/ACE2 protein fusion experiments suggest that promoter specificity resides in a domain distinct from the zinc finger domain.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Reference45 articles.

1. Identification of a DNA binding factor involved in cell-cycle control of the yeast HO gene

2. Cell cycle control of the yeast HO gene: Cis- and Trans-acting regulators

3. Cell cycle-specific expression of the SWI4 transcription factor is required for the cell cycle regulation of HO transcription.

4. ACE2, an activator of yeast metallothionein expression which is homologous to SWI5.;Mol. Cell. Biol.,1991

5. Byers, B. 1981. Cytology of the yeast life cycle. The molecular biology of the yeast Saccharomyces cerevisiae. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3