Affiliation:
1. Predoctoral Training Program in Human Genetics and Molecular Biology
2. Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
Abstract
ABSTRACT
Telomere dysfunction causes genomic instability. However, the mechanism that initiates this instability when telomeres become short is unclear. We measured the mutation rate and loss of heterozygosity along a chromosome arm in diploid yeast that lacked telomerase to distinguish between mechanisms for the initiation of instability. Sequence loss was localized near chromosome ends in the absence of telomerase but not after breakage of a dicentric chromosome. In the absence of telomerase, the increase in mutation rate is dependent on the exonuclease Exo1p. Thus, exonucleolytic end resection, rather than chromosome fusion and breakage, is the primary mechanism that initiates genomic instability when telomeres become short.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献