Suppression of telomere capping defects of Saccharomyces cerevisiae yku70 and yku80 mutants by telomerase

Author:

Holland Cory L1,Sanderson Brian A1,Titus James K1,Weis Monica F1,Riojas Angelica M1,Malczewskyj Eric1,Wasko Brian M2ORCID,Lewis L Kevin1

Affiliation:

1. Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA

2. Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX, 77058, USA

Abstract

Abstract The Ku complex performs multiple functions inside eukaryotic cells, including protection of chromosomal DNA ends from degradation and fusion events, recruitment of telomerase, and repair of double-strand breaks (DSBs). Inactivation of Ku complex genes YKU70 or YKU80 in cells of the yeast Saccharomyces cerevisiae gives rise to mutants that exhibit shortened telomeres and temperature-sensitive growth. In this study, we have investigated the mechanism by which overexpression of telomerase suppresses the temperature sensitivity of yku mutants. Viability of yku cells was restored by overexpression of the Est2 reverse transcriptase and TLC1 RNA template subunits of telomerase, but not the Est1 or Est3 proteins. Overexpression of other telomerase- and telomere-associated proteins (Cdc13, Stn1, Ten1, Rif1, Rif2, Sir3, and Sir4) did not suppress the growth defects of yku70 cells. Mechanistic features of suppression were assessed using several TLC1 RNA deletion derivatives and Est2 enzyme mutants. Supraphysiological levels of three catalytically inactive reverse transcriptase mutants (Est2-D530A, Est2-D670A, and Est2-D671A) suppressed the loss of viability as efficiently as the wild-type Est2 protein, without inducing cell senescence. Roles of proteins regulating telomere length were also determined. The results support a model in which chromosomes in yku mutants are stabilized via a replication-independent mechanism involving structural reinforcement of protective telomere cap structures.

Funder

National Institutes of Health

NIGMS

South Texas Doctoral Bridge Program

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3