Binding and Internalization of Glucuronoxylomannan, the Major Capsular Polysaccharide of Cryptococcus neoformans , by Murine Peritoneal Macrophages

Author:

Chang Zong Liang12,Netski Dale1,Thorkildson Peter1,Kozel Thomas R.1

Affiliation:

1. Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, Nevada 89557

2. Laboratory of Immune Signal Transduction, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China

Abstract

ABSTRACT Glucuronoxylomannan (GXM), the major component of the capsular polysaccharide of Cryptococcus neoformans , is essential to virulence of the yeast. Previous studies found that the interaction between GXM and phagocytic cells has biological consequences that may contribute to the pathogenesis of cryptococcosis. We found that GXM binds to and is taken up by murine peritoneal macrophages. Uptake is dose and time dependent. Examination of the sites of GXM accumulation by immunofluorescence microscopy showed that the pattern was discontinuous and punctate both on the surfaces of macrophages and at intracellular depots. Although resident macrophages showed appreciable accumulation of GXM, uptake was greatest with thioglycolate-elicited macrophages. A modest stimulation of GXM binding followed treatment of resident macrophages with phorbol 12-myristate 13-acetate, but treatment with lipopolysaccharide or gamma interferon alone or in combination had no effect. Accumulation of GXM was critically dependent on cytoskeleton function; a near complete blockade of accumulation followed treatment with inhibitors of actin. GXM accumulation by elicited macrophages was blocked by treatment with inhibitors of tyrosine kinase, protein kinase C, and phospholipase C, but not by inhibitors of phosphatidylinositol 3-kinase, suggesting a critical role for one or more signaling pathways in the macrophage response to GXM. Taken together, the results demonstrate that it is possible to experimentally enhance or suppress binding of GXM to macrophages, raising the possibility for regulation of the interaction between this essential virulence factor and binding sites on cells that are central to host resistance.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3