Artificial mutations and natural variations in the CD46 molecules from human and monkey cells define regions important for measles virus binding

Author:

Hsu E C1,Dörig R E1,Sarangi F1,Marcil A1,Iorio C1,Richardson C D1

Affiliation:

1. Department of Medical Biophysics, University of Toronto, Ontario, Canada.

Abstract

CD46 was previously shown to be a primate-specific receptor for the Edmonston strain of measles virus. This receptor consists of four short consensus regions (SCR1 to SCR4) which normally function in complement regulation. Measles virus has recently been shown to interact with SCR1 and SCR2. In this study, receptors on different types of monkey erythrocytes were employed as "natural mutant proteins" to further define the virus binding regions of CD46. Erythrocytes from African green monkeys and rhesus macaques hemagglutinate in the presence of measles virus, while baboon erythrocytes were the least efficient of the Old World monkey cells used in these assays. Subsequent studies demonstrated that the SCR2 domain of baboon CD46 contained an Arg-to-Gln mutation at amino acid position 103 which accounted for reduced hemagglutination activity. Surprisingly, none of the New World monkey erythrocytes hemagglutinated in the presence of virus. Sequencing of cDNAs derived from the lymphocytes of these New World monkeys and analysis of their erythrocytes with SCR1-specific polyclonal antibodies indicated that the SCR1 domain was deleted in these cells. Additional experiments, which used 35 different site-specific mutations inserted into CD46, were performed to complement the preceding studies. The effects of these artificial mutations were documented with a convenient binding assay using insect cells expressing the measles virus hemagglutinin. Mutations which mimicked the change found in baboon CD46 or another which deleted the SCR2 glycosylation site reduced binding substantially. Another mutation which altered GluArg to AlaAla at positions 58 and 59, totally abolished binding. Finally, the epitopes for two monoclonal antibodies which inhibit measles virus attachment were mapped to the same regions implicated by mutagenesis.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference83 articles.

1. Contribution of the repeating domains of membrane cofactor protein (MCP; CD46) of the complement system to ligand binding and cofactor activity;Adams E. M.;J. Immunol.,1991

2. Fatal measles infection in marmosets: pathogenesis and prophylaxis;Albrecht P.;Infect. Immun.,1980

3. Encephalitogenicity of measles virus in marmosets;Albrecht P.;Infect. Immun.,1981

4. The predicted primary structure of measles virus hemagglutinin;Alkhatib G.;Virology,1986

5. Identification of the residue in human CD4 critical for the binding of HIV;Arthos J.;Cell,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3