The dCas9-based genome editing in Plasmodium yoelii

Author:

Zhang Chao1ORCID,Yang Shijie2,Quansah Elvis1,Zhang Ziyu3,Da Weiran3,Wang Bingjie3

Affiliation:

1. Department of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China

2. The Second Clinical Medical College, Anhui Medical University, Hefei, China

3. The First Clinical Medical College, Anhui Medical University, Hefei, China

Abstract

ABSTRACT Genetic editing is a powerful tool for functional characterization of genes in various organisms. With its simplicity and specificity, the CRISPR-Cas9 technology has become a popular editing tool, which introduces site-specific DNA double-strand breaks (DSBs), and then leverages the endogenous repair pathway for DSB repair via homology-directed repair (HDR) or the more error-prone non-homologous end joining (NHEJ) pathways. However, in the Plasmodium parasites, the lack of a typical NHEJ pathway selects for DSB repair through the HDR pathway when a homologous DNA template is available. The AT-rich nature of the Plasmodium genome exacerbates this drawback by making it difficult to clone longer homologous repair DNA templates. To circumvent these challenges, we adopted the hybrid catalytically inactive Cas9 (dCas9)-microbial single-stranded annealing proteins (SSAP) editor to the Plasmodium genome. In Plasmodium yoelii , we demonstrated the use of the dCas9-SSAP, as the cleavage-free gene editor, by targeted gene deletion and gene tagging, even using shorter homologous DNA templates. This dCas9-SSAP method with a shorter DNA template, which did not require DSBs, independent of HDR and NHEJ, would be a great addition to the existing genetic toolbox and could be deployed for the functional characterization of genes in Plasmodium , contributing to improving the ability of the malaria research community in characterizing more than half of genes with unknown functions. IMPORTANCE Malaria caused by Plasmodium parasites infection remains a serious threat to human health, with an estimated 249 million malaria cases and 608,000 deaths worldwide in 2022, according to the latest report from the World Health Organization (WHO). Here, we demonstrated the use of dCas9-single-stranded annealing protein, as the cleavage-free gene editor in Plasmodium yoelii , by targeted deletion and gene tagging, even using shorter homologous DNA templates. This method with a shorter DNA template, which did not require DSBs, independent of HDR and NHEJ, showing the potential significance in greatly improving our ability to elucidate gene functions, would contribute to assisting the malaria research community in deciphering more than half of genes with unknown functions to identify new drug and vaccine targets.

Funder

Anhui Medical University

Scientific Research Foundation of Education Department of Anhui Province of China

Publisher

American Society for Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applications of CRISPR in Parasitology;Current Pharmaceutical Biotechnology;2024-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3