Increasing Temperature and Relative Humidity Accelerates Inactivation of SARS-CoV-2 on Surfaces

Author:

Biryukov Jennifer1ORCID,Boydston Jeremy A.1,Dunning Rebecca A.1,Yeager John J.1,Wood Stewart1,Reese Amy L.1,Ferris Allison1,Miller David1,Weaver Wade1,Zeitouni Nathalie E.1ORCID,Phillips Aaron1,Freeburger Denise1,Hooper Idris1,Ratnesar-Shumate Shanna1ORCID,Yolitz Jason1,Krause Melissa1,Williams Gregory1,Dawson David G.1,Herzog Artemas2,Dabisch Paul1ORCID,Wahl Victoria1ORCID,Hevey Michael C.1,Altamura Louis A.1ORCID

Affiliation:

1. National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security Science and Technology Directorate, Fort Detrick, Maryland, USA

2. Censeo Consulting Group Inc., Washington, DC, USA

Abstract

Mitigating the transmission of SARS-CoV-2 in clinical settings and public spaces is critically important to reduce the number of COVID-19 cases while effective vaccines and therapeutics are under development. SARS-CoV-2 transmission is thought to primarily occur through direct person-to-person transfer of infectious respiratory droplets or through aerosol-generating medical procedures. However, contact with contaminated surfaces may also play a significant role. In this context, understanding the factors contributing to SARS-CoV-2 persistence on surfaces will enable a more accurate estimation of the risk of contact transmission and inform mitigation strategies. To this end, we have developed a simple mathematical model that can be used to estimate virus decay on nonporous surfaces under a range of conditions and which may be utilized operationally to identify indoor environments in which the virus is most persistent.

Funder

U.S. Department of Homeland Security

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 284 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3