SARS-CoV-2 Delta variant remains viable in environmental biofilms found in meat packaging plants

Author:

Featherstone Austin B.,Mathijssen Arnold J. T. M.,Brown Amanda,Chitlapilly Dass SapnaORCID

Abstract

To determine why SARS-CoV-2 appears to thrive specifically well in meat packaging plants, we used SARS-CoV-2 Delta variant and meat packaging plant drain samples to develop mixed-species biofilms on materials commonly found within meat packaging plants (stainless steel (SS), PVC, and ceramic tile). Our data provides evidence that SARS-CoV-2 Delta variant remained viable on all the surfaces tested with and without an environmental biofilm after the virus was inoculated with the biofilm for 5 days at 7°C. We observed that SARS-CoV-2 Delta variant was able to remain infectious with each of the environmental biofilms by conducting plaque assay and qPCR experiments, however, we detected a significant reduction in viability post-exposure to Plant B biofilm on SS, PVC, and on ceramic tile chips, and to Plant C biofilm on SS and PVC chips. The numbers of viable SARS-CoV-2 Delta viral particles was 1.81–4.57-fold high than the viral inoculum incubated with the Plant B and Plant C environmental biofilm on SS, and PVC chips. We did not detect a significant difference in viability when SARS-CoV-2 Delta variant was incubated with the biofilm obtained from Plant A on any of the materials tested and SARS-CoV-2 Delta variant had higher plaque numbers when inoculated with Plant C biofilm on tile chips, with a 2.75-fold difference compared to SARS-CoV-2 Delta variant on tile chips by itself. In addition, we detected an increase in the biofilm biovolume in response to SARS-CoV-2 Delta variant which is also a concern for food safety due to the potential for foodborne pathogens to respond likewise when they come into contact with the virus. These results indicate a complex virus-environmental biofilm interaction which correlates to the different bacteria found in each biofilm. Our results also indicate that there is the potential for biofilms to protect SARS-CoV-2 from disinfecting agents and remaining prevalent in meat packaging plants.

Funder

National Institute of Food and Agriculture

Publisher

Public Library of Science (PLoS)

Reference60 articles.

1. WHO Declares COVID-19 a Pandemic.;D Cucinotta;Acta Biomed.,2020

2. Characteristics of SARS-CoV-2 and COVID-19;B Hu;Nat Rev Microbiol,2020

3. Transmission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation.;X Deng;medRxiv.,2021

4. First Case of 2019 Novel Coronavirus in the United States;ML Holshue;N Engl J Med,2020

5. First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA.;I Ghinai;Lancet,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3