BLINCAR: a reusable bioluminescent and Cas9-based genetic toolset for repeatedly modifying wild-type Scheffersomyces stipitis

Author:

Reichard Walter D.1,Smith Serenah E.1,Robertson J. Brian1ORCID

Affiliation:

1. Department of Biology, Middle Tennessee State University , Murfreesboro, Tennessee, USA

Abstract

ABSTRACT Scheffersomyces stipitis is a yeast that robustly ferments the 5-carbon sugar xylose, making the yeast a valuable candidate for lignocellulosic ethanol fermentation. However, the non-canonical codon usage of S. stipitis is an obstacle for implementing molecular tools that were developed for other yeast species, thereby limiting the molecular toolset available for S. stipitis . Here, we developed a series of molecular tools for S. stipitis including BLINCAR, a Bio-Luminescent Indicator that is Nullified by Cas9-Actuated Recombination, which can be used repeatedly to add different exogenous DNA payloads to the wild-type S. stipitis genome or used repeatedly to remove multiple native S. stipitis genes from the wild-type genome. Through the use of BLINCAR tools, one first produces antibiotic-resistant, bioluminescent colonies of S. stipitis whose bioluminescence highlights those clones that have been genetically modified; then second, once candidate clones have been confirmed, one uses a transient Cas9-producing plasmid to nullify the antibiotic resistance and bioluminescent markers from the prior introduction, thereby producing non-bioluminescent colonies that highlight those clones which have been re-sensitized to the antibiotic and are therefore susceptible to another round of BLINCAR implementation. IMPORTANCE Cellulose and hemicellulose that comprise a large portion of sawdust, leaves, and grass can be valuable sources of fermentable sugars for ethanol production. However, some of the sugars liberated from hemicellulose (like xylose) are not easily fermented using conventional glucose-fermenting yeast like Saccharomyces cerevisiae , so engineering robust xylose-fermenting yeast that is not inhibited by other components liberated from cellulose/hemicellulose will be important for maximizing yield and making lignocellulosic ethanol fermentation cost efficient. The yeast Scheffersomyces stipitis is one such yeast that can ferment xylose; however, it possesses several barriers to genetic manipulation. It is difficult to transform, has only a few antibiotic resistance markers, and uses an alternative genetic code from most other organisms. We developed a genetic toolset for S. stipitis that lowers these barriers and allows a user to deliver and/or delete multiple genetic elements to/from the wild-type genome, thereby expanding S. stipitis’s potential.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3