Mimicry Embedding Facilitates Advanced Neural Network Training for Image-Based Pathogen Detection

Author:

Yakimovich Artur1,Huttunen Moona12,Samolej Jerzy1,Clough Barbara23,Yoshida Nagisa345,Mostowy Serge45,Frickel Eva-Maria23,Mercer Jason12

Affiliation:

1. MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom

2. Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom

3. Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, United Kingdom

4. Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom

5. Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom

Abstract

In biology, the use of deep neural networks (DNNs) for analysis of pathogen infection is hampered by a lack of large verified data sets needed for rapid network evolution. Artificial neural networks detect handwritten digits with high precision thanks to large data sets, such as MNIST, that allow nearly unlimited training. Here, we developed a novel strategy we call mimicry embedding, which allows artificial intelligence (AI)-based analysis of variable pathogen-host data sets. We show that deep learning can be used to detect and classify single pathogens based on small differences.

Funder

UKRI | Medical Research Council

Francis Crick Institute

EC | Horizon 2020 Framework Programme

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference43 articles.

1. A unified architecture for natural language processing

2. FaceNet: A unified embedding for face recognition and clustering

3. Detecting unexpected obstacles for self-driving cars: Fusing deep learning and geometric modeling

4. Interpretable Learning for Self-Driving Cars by Visualizing Causal Attention

5. LeCun Y, Bengio Y. 1995. Convolutional networks for images, speech, and time series, p 255–258. In Arbib MA (ed), The handbook of brain theory and neural networks. MIT Press, Cambridge, MA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3