Ensuring Topological Data-Structure Preservation under Autoencoder Compression Due to Latent Space Regularization in Gauss–Legendre Nodes

Author:

Ramanaik Chethan Krishnamurthy1ORCID,Willmann Anna2ORCID,Suarez Cardona Juan-Esteban2ORCID,Hanfeld Pia2,Hoffmann Nico3ORCID,Hecht Michael24ORCID

Affiliation:

1. Forschungsinstitut CODE, University of the Bundeswehr Munich, 85579 Neubiberg, Germany

2. CASUS—Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR), 01328 Dresden, Germany

3. SAXONY.ai, 01217 Dresden, Germany

4. Mathematical Institute, University of Wrocław, 50-384 Wrocław, Poland

Abstract

We formulate a data-independent latent space regularization constraint for general unsupervised autoencoders. The regularization relies on sampling the autoencoder Jacobian at Legendre nodes, which are the centers of the Gauss–Legendre quadrature. Revisiting this classic allows us to prove that regularized autoencoders ensure a one-to-one re-embedding of the initial data manifold into its latent representation. Demonstrations show that previously proposed regularization strategies, such as contractive autoencoding, cause topological defects even in simple examples, as do convolutional-based (variational) autoencoders. In contrast, topological preservation is ensured by standard multilayer perceptron neural networks when regularized using our approach. This observation extends from the classic FashionMNIST dataset to (low-resolution) MRI brain scans, suggesting that reliable low-dimensional representations of complex high-dimensional datasets can be achieved using this regularization technique.

Funder

Center of Advanced Systems Understanding

Germany’s Federal Ministry of Education and Research

Saxon Ministry for Science, Culture and Tourism

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3