Affiliation:
1. Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin
Abstract
ABSTRACT
We report that
cobC
strains of
Salmonella enterica
serovar Typhimurium are impaired in the ability to salvage cobyric acid (Cby), a de novo corrin ring biosynthetic intermediate, under aerobic growth conditions. In vivo and in vitro evidence support the conclusion that this new phenotype of
cobC
strains is due to the inability of serovar Typhimurium to dephosphorylate adenosylcobalamin-5′-phosphate (AdoCbl-5′-P), the product of the condensation of α-ribazole-5′-phosphate (α-RP) and adenosylcobinamide-GDP by the AdoCbl-5′-P synthase (CobS, EC 2.7.8.26) enzyme. Increased flux through the 5,6-dimethylbenzimidazole and cobinamide (Cbi) activation branches of the nucleotide loop assembly pathway in
cobC
strains restored AdoCbl-5′-P synthesis from Cby in a
cobC
strain. The rate of the CobS-catalyzed reaction was at least 2 orders of magnitude higher with α-RP than with α-ribazole as substrate. On the basis of the data reported herein, we conclude that removal of the phosphoryl group from AdoCbl-5′-P is the last step in AdoCbl biosynthesis in serovar Typhimurium and that the reaction is catalyzed by the AdoCbl-5′-P phosphatase (CobC) enzyme. Explanations for the correction of the Cby salvaging phenotype are discussed.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献