Transformation yields of chlorinated ethenes by a methanotrophic mixed culture expressing particulate methane monooxygenase

Author:

Anderson J E1,McCarty P L1

Affiliation:

1. Department of Civil Engineering, Stanford University, California 94305-4020, USA.

Abstract

Transformation yields for the aerobic cometabolic degradation of five chlorinated ethenes were determined by using a methanotrophic mixed culture expressing particulate methane monooxygenase (pMMO). Transformation yields (expressed as moles of chlorinated ethene degraded per mole of methane consumed) were 0.57, 0.25, 0.058, 0.0019, and 0.00022 for trans-1,2-dichloroethylene (t-DCE), vinyl chloride (VC), cis-1,2-dichloroethylene (c-DCE), trichloroethylene (TCE), and 1,1-dichloroethylene (1,1-DCE), respectively. Degradation of t-DCE and VC was observed only in the presence of formate or methane, sources of reducing energy necessary for cometabolism. The t-DCE and VC transformation yields represented 35 and 15%, respectively, of the theoretical maximum yields, based on reducing-energy availability from methane dissimilation to carbon dioxide, exclusive of all other processes that require reducing energy. The yields for t-DCE and VC were 20 times greater than the yields reported by others for cells expressing soluble methane monooxygenase (sMMO). Transformation yields for c-DCE, TCE, and 1,1-DCE were similar to or less than those for cultures expressing sMMO. Although methanotrophic biotreatment systems have typically been designed to incorporate cultures expressing sMMO, these results suggest that pMMO expression may be highly advantageous for degradation of t-DCE or VC. It may also be much easier to maintain pMMO expression in treatment systems, because pMMO is expressed by all methanotrophs whereas sMMO is expressed only by type II methanotrophs under copper-limited conditions.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference38 articles.

1. Characterization of a methane-utilizing bacterium from a bacterial consortium that rapidly degrades trichloroethylene and chloroform;Alvarez-Cohen L.;Appl. Environ. Microbiol.,1992

2. Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture;Alvarez-Cohen L. M.;Appl. Environ. Microbiol.,1991

3. Anderson J. E. and P. L. McCarty. Effect of chlorinated ethenes on S min for a methanotrophic mixed culture. Submitted for publication.

4. A model for treatment of trichloroethylene by methanotrophic biofilms;Anderson J. E.;J. Environ. Eng.,1994

5. Effect of three chlorinated ethenes on growth rates for a methanotrophic mixed culture;Anderson J. E.;Environ. Sci. Technol.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3