Role of Mrx Fimbriae of Xenorhabdus nematophila in Competitive Colonization of the Nematode Host

Author:

Snyder Holly,He Hongjun,Owen Heather,Hanna Chris,Forst Steven

Abstract

ABSTRACTXenorhabdus nematophilaengages in mutualistic associations with the infective juvenile (IJ) stage of specific entomopathogenic nematodes. Mannose-resistant (Mrx) chaperone-usher-type fimbriae are produced when the bacteria are grown on nutrient broth agar (NB agar). The role of Mrx fimbriae in the colonization of the nematode host has remained unresolved. We show thatX. nematophilagrown on LB agar produced flagella rather than fimbriae. IJs propagated onX. nematophilagrown on LB agar were colonized to the same extent as those propagated on NB agar. Further, progeny IJs were normally colonized bymrxmutant strains that lacked fimbriae both when bacteria were grown on NB agar and when coinjected into the insect host with aposymbiotic nematodes. Themrxstrains were not competitively defective for colonization when grown in the presence of wild-type cells on NB agar. In addition, a phenotypic variant strain that lacked fimbriae colonized as well as the wild-type strain. In contrast, themrxstrains displayed a competitive colonization defectin vivo. IJ progeny obtained from insects injected with comixtures of nematodes carrying either the wild-type or themrxstrain were colonized almost exclusively with the wild-type strain. Likewise, when insects were coinjected with aposymbiotic IJs together with a comixture of the wild-type andmrxstrains, the resulting IJ progeny were predominantly colonized with the wild-type strain. These results revealed that Mrx fimbriae confer a competitive advantage during colonizationin vivoand provide new insights into the role of chaperone-usher fimbriae in the life cycle ofX. nematophila.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference50 articles.

1. Neoaplectana species: specificity of association with bacteria of the genus Xenorhabdus;Akhurst;Exp. Parasitol.,1983

2. A numerical taxonomic study of the genus Xenorhabdus (Enterobacteriaceae) and proposed elevation of the subspecies of X. nematophilus to species;Akhurst;J. Gen. Microbiol.,1988

3. The pKNOCK series of broad-host-range mobilization suicide vectors for gene knockout and targeted DNA insertion into the chromosome of Gram-negative bacteria;Alexeyev;Biotechniques,1999

4. Proteus mirabilis MR/P fimbrial operon: genetic organization, nucleotide sequence, and conditions for expression;Bahrani;J. Bacteriol.,1994

5. The cytotoxic fimbrial structural subunit of Xenorhabdus nematophila is a pore-forming toxin;Banerjee;J. Bacteriol.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3