Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin

Author:

Li X Z1,Livermore D M1,Nikaido H1

Affiliation:

1. Department of Molecular and Cell Biology, University of California, Berkeley 94720.

Abstract

Most strains of Pseudomonas aeruginosa are significantly more resistant, even in the absence of R plasmids, to many antimicrobial agents, including beta-lactams, tetracycline, chloramphenicol, and fluoroquinolones, than most other gram-negative rods. This broad-range resistance has so far been assumed to be mainly due to the low permeability of the P. aeruginosa outer membrane. The intrinsic-resistance phenotype becomes further enhanced in "intrinsically carbenicillin-resistant" isolates, which were often assumed to produce outer membranes of even lower permeability. It has been shown, however, that this hypothesis cannot explain the beta-lactam resistance of these isolates (D.M. Livermore and K.W.M. Davy, Antimicrob. Agents Chemother. 35:916-921, 1991). In this study, we examined the uptake of tetracycline, chloramphenicol, and norfloxacin by intact cells using strains showing widely different levels of intrinsic resistance. Their accumulation and the response to the addition of a proton conductor showed that even relatively susceptible strains of P. aeruginosa actively pump out these compounds from the cell and that the efflux activity becomes much stronger in strains showing higher levels of intrinsic resistance. We conclude that the efflux mechanism(s) are likely to contribute significantly to the intrinsic resistance of P. aeruginosa isolates to tetracycline, chloramphenicol, and fluoroquinolones, as does the low permeability of the outer membrane. This conclusion is supported by the observation that the hypersusceptibility to various agents of the mutant K799/61 (W. Zimmermann, Antimicrob. Agents Chemother. 18:94-100, 1980) was apparently caused by the lack of active efflux. Although the hypersusceptibility of this mutant has hitherto been assumed to be solely due to its higher outer membrane permeability, its outer membrane was shown to have a coefficient of permeability to cephaloridine that was not significantly different from that of the parent, resistant strain K799/WT. The strains with elevated intrinsic resistance overproduced two cytoplasmic membrane proteins and one outer membrane protein; at least two of these proteins appeared different from the proteins overproduced in the recently described mutant with a derepressed multidrug efflux system, MexA-MexB-OprK (K. Poole, K. Krebes, C. McNally, and S. Neshat, J. Bacteriol. 175:7363-7372, 1993).

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3