The Role of Efflux Pumps transporter in Multi-drug Resistant Tuberculosis: Mycobacterial memberane protein(MmpL5)

Author:

Farnia Parissa1,Besharati Saeid1,Farina Poopak1ORCID,Ayoubi Saman1,Marjani Majid2,Ghanavi Jalaledin1,Tabarsi Payam2,Velayati Ali Akbar1

Affiliation:

1. Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2. Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Abstract Background: The overexpression of efflux pumps (Eps) was reported to contribute to multidrug resistant tuberculosis (MDR-TB). Increases in Eps that expel structurally unrelated drugs contribute to reduced susceptibility by decreasing the intracellular concentration of antibiotics. In the present study, an association of mycobacterial membrane protein (MmpS5-MmpL5) Ep and its gene regulator (Rv0678) was investigated in MDR-tuberculosis isolates. Methods: MTB strains were isolated from patients at two different intervals, i.e., once when they had persistent symptoms despite 3–15 ≥ months of treatment and once when they had started new combination therapy ≥2–3 months. Sputum specimens were subjected to Xpert MTB/rifampicin test and then further susceptibility testing using proportional method and multiplex polymerase chain reaction (PCR) were performed on them. The isolates were characterized using both 16S-23S RNA and hsp65 genes spacer (PCR-restriction fragment length polymorphism). Whole-genome sequencing (WGS) was investigated on two isolates from culture-positive specimen per patient. The protein structure was simulated using the SWISS-MODEL. The input format used for this web server was FASTA (amino acid sequence). Protein structure was also analysis using Ramachandran plot. Results: WGS documented deletion, insertion, and substitution in transmembrane transport protein MmpL5 (Rv0676) of Eps. Majority of the studied isolates (n = 12; 92.3%) showed a unique deletion mutation at three positions: (a) from amino acid number 771 (isoleucine) to 776 (valine), (b) from amino acid number 785 (valine) to 793 (histidine), and (c) from amino acid number 798 (leucine) to 806 (glycine).” One isolate (7.6%) had no deletion mutation. In all isolates (n = 13; 100%), a large insertion mutation consisting of 94 amino acid was observed “from amino acid number 846 (isoleucine) to amino acid number 939 (leucine)”. Thirty-eight substitutions in Rv0676 were detected, of which 92.3% were identical in the studied isolates. WGS of mycobacterial membrane proteins (MmpS5; Rv0677) and its gene regulator (Rv0678) documented no deletion, insertion, and substitution. No differences were observed between MmpS5-MmpL5 and its gene regulator in isolates that were collected at different intervals. Conclusions: Significant genetic mutation like insertion, deletion, and substitution within transmembrane transport protein MmpL5 (Rv0676) can change the functional balance of Eps and cause a reduction in drug susceptibility. This is the first report documenting a unique amino acid mutation (insertion and deletion ≥4–94) in Rv0676 among drug-resistant MTB. We suggest the changes in Mmpl5 (Rv0676) might occurred due to in-vivo sub-therapeutic drug stress within the host cell. Changes in MmpL5 are stable and detected through subsequent culture-positive specimens.

Publisher

Medknow

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pharmacogenetic Study of Drugs Affecting Mycobacterium tuberculosis;The International Journal of Mycobacteriology;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3