Size Dependence of Protein Diffusion in the Cytoplasm of Escherichia coli

Author:

Nenninger Anja1,Mastroianni Giulia1,Mullineaux Conrad W.1

Affiliation:

1. School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom

Abstract

ABSTRACT Diffusion in the bacterial cytoplasm is regarded as the primary method of intracellular protein movement and must play a major role in controlling the rates of cell processes. A number of recent studies have used green fluorescent protein (GFP) tagging and fluorescence microscopy to probe the movement and distribution of proteins in the bacterial cytoplasm. However, the dynamic behavior of indigenous proteins must be controlled by a complex mixture of specific interactions, combined with the basic physical constraints imposed by the viscosity and macromolecular crowding of the cytoplasm. These factors are difficult to unravel in studies with indigenous proteins. To what extent the addition of a GFP tag might affect the movement of a protein through the cytoplasm has also remained unknown. To resolve these problems, we have carried out a systematic study of the size dependence of protein diffusion coefficients in the Escherichia coli cytoplasm, using engineered GFP multimers (from 2 to 6 covalently linked GFP molecules). Diffusion coefficients were measured using confocal fluorescence recovery after photobleaching (FRAP). At least up to 110 kDa (four linked GFP molecules), the diffusion coefficient varies with size roughly as would be predicted from the Einstein-Stokes equation for a classical (Newtonian) fluid. Thus, protein diffusion coefficients are predictable over this range. GFP tagging of proteins has little impact on the diffusion coefficient over this size range and therefore need not significantly perturb protein movement. Two indigenous E. coli proteins were used to show that their specific interactions within the cell are the main controllers of the diffusion rate.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3