Stress-Induced Membrane Association of the Streptococcus mutans GTP-Binding Protein, an Essential G Protein, and Investigation of Its Physiological Role by Utilizing an Antisense RNA Strategy

Author:

Baev Didi1,England Reg2,Kuramitsu Howard K.1

Affiliation:

1. Department of Oral Biology, State University of New York, Buffalo, New York 14214,1 and

2. Department of Biological Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom2

Abstract

ABSTRACT SGP (for Streptococcus GTP-binding protein) is a Streptococcus mutans essential GTPase which has significant sequence identity to the previously identified Escherichia coli Era protein and to numerous other prokaryotic GTPase proteins of unknown function. Recent studies in our laboratory have addressed the possible role of SGP in the stress response of the oral pathogen S. mutans . Here we report that during growth in the early stationary phase, and in response to elevated temperatures or acidic pH, the distribution of SGP between the cytoplasm and the membranes of S. mutans cells varies. Immunoblot analysis of soluble and membrane protein fractions collected from the mid-log and early stationary growth phases of bacterial populations grown at normal temperature (37°C) and at the elevated temperature of 43°C, or at acidic pH, demonstrated that the total amount of SGP increased with the age of the bacterial culture, elevated temperature, or acidic pH. Furthermore, it was established that a substantial amount of SGP is associated with the membrane fraction under stress conditions. In order to investigate the physiological role of SGP, we constructed an S. mutans strain capable of chromosomal sgp antisense RNA expression, which interferes with the normal information processing of the sgp gene. Utilizing this strain, we determined conditions whereby the streptococcal cells can be depleted of SGP, thus avoiding the problem of constructing a conditional lethal system. From the results of measurements of the nucleotide pools extracted from the antisense strain and its isogenic counterpart, we propose that one of the physiological roles of SGP is regulation and modulation of the GTP/GDP ratio under different growth conditions. Moreover, we observed that in SGP-depleted cells the levels of glucan-binding protein A (GbpA) substantially increased, suggesting that GbpA may have stress response-related physiological functions. Finally, the potential applications of the antisense RNA approach that we employed are discussed.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference38 articles.

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3