γδ T Cells Regulate the Early Inflammatory Response to Bordetella pertussis Infection in the Murine Respiratory Tract

Author:

Zachariadis O.12,Cassidy J. P.1,Brady J.1,Mahon B. P.2

Affiliation:

1. Department of Veterinary Pathology, Faculty of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland

2. Mucosal Immunology Laboratory, Institute of Immunology, NUI Maynooth, County Kildare, Ireland

Abstract

ABSTRACT The role of γδ T cells in the regulation of pulmonary inflammation following Bordetella pertussis infection was investigated. Using a well-characterized murine aerosol challenge model, inflammatory events in mice with targeted disruption of the T-cell receptor δ-chain gene (γδ TCR −/− mice) were compared with those in wild-type animals. Early following challenge with B. pertussis , γδ TCR −/− mice exhibited greater pulmonary inflammation, as measured by intra-alveolar albumin leakage and lesion histomorphometry, yet had lower contemporaneous bacterial lung loads. The larger numbers of neutrophils and macrophages and the greater concentration of the neutrophil marker myeloperoxidase in bronchoalveolar lavage fluid from γδ TCR −/− mice at this time suggested that differences in lung injury were mediated through increased leukocyte trafficking into infected alveoli. Furthermore, flow cytometric analysis found the pattern of recruitment of natural killer (NK) and NK receptor + T cells into airspaces differed between the two mouse types over the same time period. Taken together, these findings suggest a regulatory influence for γδ T cells over the early pulmonary inflammatory response to bacterial infection. The absence of γδ T cells also influenced the subsequent adaptive immune response to specific bacterial components, as evidenced by a shift from a Th1 to a Th2 type response against the B. pertussis virulence factor filamentous hemagglutinin in γδ TCR −/− mice. The findings are relevant to the study of conditions such as neonatal B. pertussis infection and acute respiratory distress syndrome where γδ T cell dysfunction has been implicated in the inflammatory process.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3