The immunology of Bordetella pertussis infection and vaccination

Author:

Wilk Mieszko M.,Allen Aideen C.,Misiak Alicja,Borkner Lisa,Mills Kingston H.G.

Abstract

Bordetella pertussis causes whooping cough (pertussis), a severe and sometimes fatal respiratory infectious disease, especially in young infants. Pertussis can be prevented in infants and children by immunization with either whole-cell pertussis (wP) or acellular pertussis (aP) vaccines; however, its incidence is increasing in many countries despite high vaccine coverage. This resurgence in populations immunized with aP vaccines has been attributed to (1) genetic changes in circulating strains of B. pertussis resulting from vaccine-driven immune selection, (2) waning protective immunity due to poor induction of immunological memory, or (3) a failure of aP vaccines to induce the appropriate arm(s) of the cellular immune responses required to prevent infection. Studies in a baboon model have suggested that previous infection prevents reinfection as well as disease, whereas aP vaccines fail to prevent nasal colonization and transmission of B. pertussis. Studies in the mouse model have demonstrated that immunization with wP vaccines induces Th1 and Th17 responses, whereas aP vaccines promote Th2-skewed responses and high antibody titres. Thus, while aP vaccine-induced antibodies may prevent pertussis, they may not prevent nasal colonization or transmission. Emerging data have suggested that replacing alum with novel adjuvants based on pathogen-associated molecular patterns has the capacity to switch the responses induced with aP vaccines to the more protective Th1/Th17 responses and may also enhance immunological memory. It is likely that third-generation pertussis vaccines will be based on live attenuated bacteria or aP formulations with novel adjuvants, which prevent nasal and lung infection and induce sustained immunity through induction of memory T cells.

Publisher

Oxford University Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3