Functional Consequences of Substitution Mutations in MepR, a Repressor of the Staphylococcus aureus mepA Multidrug Efflux Pump Gene

Author:

Schindler Bryan D.1,Seo Susan M.1,Jacinto Pauline L.2,Kumaraswami Muthiah3,Birukou Ivan4,Brennan Richard G.4,Kaatz Glenn W.12

Affiliation:

1. The John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan, USA

2. and Department of Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, Michigan, USA

3. Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology and Genomic Medicine, The Methodist Hospital System, Houston, Texas, USA

4. Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA

Abstract

ABSTRACT The expression of mepA , encoding the Staphylococcus aureus MepA multidrug efflux protein, is repressed by the MarR homologue MepR. MepR dimers bind differently to operators upstream of mepR and mepA , with affinity being greatest at the mepA operator. MepR substitution mutations may result in mepA overexpression, with A103V most common in clinical strains. Evaluation of the functional consequences of this and other MepR substitutions using a lacZ reporter gene assay revealed markedly reduced repressor activity in the presence of Q18P, F27L, G97E, and A103V substitutions. Reporter data were generally supported by susceptibility and efflux assays, and electrophoretic mobility shift assays (EMSAs) confirmed compromised affinities of MepR F27L and A103V for the mepR and mepA operators. One mutant protein contained two substitutions (T94P and T132M); T132M compensated for the functional defect incurred by T94P and also rescued that of A103V but not F27L, establishing it as a limited-range suppressor. The function of another derivative with 10 substitutions was minimally affected, and this may be an extreme example of suppression involving interactions among several residues. Structural correlations for the observed functional effects were ascertained by modeling mutations onto apo-MepR. It is likely that F27L and A103V affect the protein-DNA interaction by repositioning of DNA recognition helices. Negative functional consequences of MepR substitution mutations may result from interference with structural plasticity, alteration of helical arrangements, reduced protein-cognate DNA affinity, or possibly association of MepR protomers. Structural determinations will provide further insight into the consequences of these and other mutations that affect MepR function, especially the T132M suppressor.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3