Use of a Genetic Approach To Evaluate the Consequences of Inhibition of Efflux Pumps in Pseudomonas aeruginosa

Author:

Lomovskaya Olga1,Lee Angela1,Hoshino Kazuki2,Ishida Hiroko2,Mistry Anita1,Warren Mark S.1,Boyer Eric1,Chamberland Suzanne1,Lee Ving J.1

Affiliation:

1. Microcide Pharmaceuticals Inc., Mountain View, California 94043,1 and

2. Daiichi Pharmaceutical Co., Ltd., Tokyo 134, Japan2

Abstract

ABSTRACT Drug efflux pumps in Pseudomonas aeruginosa were evaluated as potential targets for antibacterial therapy. The potential effects of pump inhibition on susceptibility to fluoroquinolone antibiotics were studied with isogenic strains that overexpress or lack individual efflux pumps and that have various combinations of efflux- and target-mediated mutations. Deletions in three efflux pump operons were constructed. As expected, deletion of the MexAB-OprM efflux pump decreased resistance to fluoroquinolones in the wild-type P. aeruginosa (16-fold reduction for levofloxacin [LVX]) or in the strain that overexpressed mexAB-oprM operon (64-fold reduction for LVX). In addition to that, resistance to LVX was significantly reduced even for the strains carrying target mutations (64-fold for strains for which LVX MICs were >4 μg/ml). We also studied the frequencies of emergence of LVX-resistant variants from different deletion mutants and the wild-type strain. Deletion of individual pumps or pairs of the pumps did not significantly affect the frequency of emergence of resistant variants (at 4× the MIC for the wild-type strain) compared to that for the wild type (10 −6 to 10 −7 ). In the case of the strain with a triple deletion, the frequency of spontaneous mutants was undetectable (<10 −11 ). In summary, inhibition of drug efflux pumps would (i) significantly decrease the level of intrinsic resistance, (ii) reverse acquired resistance, and (iii) result in a decreased frequency of emergence of P. aeruginosa strains highly resistant to fluoroquinolones in clinical settings.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3