Affiliation:
1. Groupe de Recherche en Écologie Buccale, Département de Biochimie, Faculté des Sciences et de Génie and Faculté de Médecine Dentaire, Université Laval, Cité Universitaire, Québec, Québec, Canada G1K 7P4
Abstract
ABSTRACT
In gram-positive bacteria, the HPr protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) can be phosphorylated on a histidine residue at position 15 (His
15
) by enzyme I (EI) of the PTS and on a serine residue at position 46 (Ser
46
) by an ATP-dependent protein kinase (His∼P and Ser-P, respectively). We have isolated from
Streptococcus salivarius
ATCC 25975, by independent selection from separate cultures, two spontaneous mutants (Ga3.78 and Ga3.14) that possess a missense mutation in
ptsH
(the gene encoding HPr) replacing the methionine at position 48 by a valine. The mutation did not prevent the phosphorylation of HPr at His
15
by EI nor the phosphorylation at Ser
46
by the ATP-dependent HPr kinase. The levels of HPr(Ser-P) in glucose-grown cells of the parental and mutant Ga3.78 were virtually the same. However, mutant cells growing on glucose produced two- to threefold less HPr(Ser-P)(His∼P) than the wild-type strain, while the levels of free HPr and HPr(His∼P) were increased 18- and 3-fold, respectively. The mutants grew as well as the wild-type strain on PTS sugars (glucose, fructose, and mannose) and on the non-PTS sugars lactose and melibiose. However, the growth rate of both mutants on galactose, also a non-PTS sugar, decreased rapidly with time. The M48V substitution had only a minor effect on the repression of α-galactosidase, β-galactosidase, and galactokinase by glucose, but this mutation abolished diauxie by rendering cells unable to prevent the catabolism of a non-PTS sugar (lactose, galactose, and melibiose) when glucose was available. The results suggested that the capacity of the wild-type cells to preferentially metabolize glucose over non-PTS sugars resulted mainly from inhibition of the catabolism of these secondary energy sources via a HPr-dependent mechanism. This mechanism was activated following glucose but not lactose metabolism, and it did not involve HPr(Ser-P) as the only regulatory molecule.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献