Streptococci and lactococci synthesize large amounts of HPr(Ser-P)(His~P)

Author:

Roy Denis J.1,Casabon Israël1,Vaillancourt Katy1,Huot Jonathan L.1,Vadeboncoeur Christian1

Affiliation:

1. Groupe de Recherche en Écologie buccale, Faculté de médecine dentaire and Département de biochimie et de microbiologie, Faculté des sciences et de génie, Université Laval, 2420 rue de la Terrasse, Quebec City, QC G1V 0A6, Canada.

Abstract

HPr is a protein of the phosphoenolpyruvate:sugar phosphotransferase transport system (PTS). In gram-positive bacteria, HPr can be phosphorylated on Ser-46 by the kinase/phosphorylase HprK/P and on His-15 by phospho-enzyme I (EI~P) of the PTS. In vitro studies with purified HPrs from Bacillus subtilis , Enterococcus faecalis , and Streptococcus salivarius have indicated that the phosphorylation of one residue impedes the phosphorylation of the other. However, a recent study showed that while the rate of Streptococcus salivarius HPr phosphorylation by EI~P is reduced at acidic pH, the phosphorylation of HPr(Ser-P) by EI~P, generating HPr(Ser-P)(His~P), is stimulated. This suggests that HPr(Ser-P)(His~P) synthesis may occur in acidogenic bacteria unable to maintain their intracellular pH near neutrality. Consistent with this hypothesis, significant amounts of HPr(Ser-P)(His~P) have been detected in some streptococci. The present study was aimed at determining whether the capacity to synthesize HPr(Ser-P)(His~P) is common to streptococcal species, as well as to lactococci, which are also unable to maintain their intracellular pH near neutrality in response to a decrease in extracellular pH. Our results indicated that unlike Staphylococcus aureus, B. subtilis, and E. faecalis, all the streptococcal and lactococcal species tested were able to synthesize large amounts of HPr(Ser-P)(His~P) during growth. We also showed that Streptococcus salivarius IIABLMan, a protein involved in sugar transport by the PTS, could be efficiently phosphorylated by HPr(Ser-P)(His~P).

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3