Peptidoglycan fragments decrease food intake and body weight gain in rats

Author:

Biberstine K J1,Rosenthal R S1

Affiliation:

1. Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis 46202.

Abstract

We hypothesized that peptidoglycan (PG) fragments decrease appetite in rats. Male Lewis rats (150 g; n > or = 7) received intraperitoneal (i.p.) injections of purified soluble PG fragments that had been treated with polymyxin B-agarose to remove residual endotoxin. Food consumption and body weight gain were determined at intervals after injection. Single i.p. injections of macromolecular extensively O-acetylated PG (S-O-PG) and non-O-acetylated PG fragments (24 to 240 micrograms/kg) reduced food intake and body weight gain in a dose-dependent fashion during the first 12 h after injection. Low-molecular-weight disaccharide peptide monomers with nonreducing 1,6-anhydro-N-acetylmuramic acid ends and muramyl dipeptide (MDP; 1.6 mg/kg) were also appetite and weight gain suppressants, albeit at least 10-fold less potent than S-O-PG; however, muramidase-derived monomers and peptide cross-linked dimers with reducing muramic acid ends were inactive. Appetite suppression was not limited to the Lewis rat strain since another strain, F344, exhibited similar decreases in food intake after injection of S-O-PG or MDP. Oral administration of MDP or S-O-PG, at concentrations 3 and 20 times higher, respectively, than those that were active i.p., failed to elicit a hypophagic response. We conclude that soluble PG fragments are potent suppressants of food consumption and body weight gain in rats and that, although macromolecular PG is more potent than low-molecular-weight fragments, neither O-acetylation nor glycosidic linkage of PG fragments is required for activity. We speculate that PG fragments may contribute to loss of appetite during bacterial illness.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference55 articles.

1. Measurement of streptococcal cell wall in tissues of rats resistant or susceptible to cell wallinduced chronic erosive arthritis;Anderle S. K.;Infect. Immun.,1985

2. Biberstine K. J. and R. S. Rosenthal. 1990. Peptidoglycan (PG) fragments released during the interaction of intact gonococci with normal human sera (NHS) abstr. B-15 p. 29. Abstr. 90th Annu. Meet. Am. Soc. Microbiol. 1990. American Society for Microbiology Washington D.C.

3. Differential regulation of group A streptococcal peptidoglycan-polysaccharide (PG-APS)-stimulated macrophage production of IL-1 by rat strains susceptible and resistant to PG-APS-induced arthritis;Bristol L. A.;Cell. Immunol.,1993

4. Signals involved in interleukin-1 synthesis and release by lipopolysaccharide-stimulated monocytes/macrophages;Cavaillon J. M.;Cytokine,1990

5. Serotonin and appetite;Curzon G.;Ann. N. Y. Acad. Sci.,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3