Peptidoglycan O-Acetylation as a Virulence Factor: Its Effect on Lysozyme in the Innate Immune System

Author:

Brott Ashley S.ORCID,Clarke Anthony J.ORCID

Abstract

The peptidoglycan sacculus of both Gram-positive and Gram-negative bacteria acts as a protective mesh and provides structural support around the entirety of the cell. The integrity of this structure is of utmost importance for cell viability and so naturally is the first target for attack by the host immune system during bacterial infection. Lysozyme, a muramidase and the first line of defense of the innate immune system, targets the peptidoglycan sacculus hydrolyzing the β-(1→4) linkage between repeating glycan units, causing lysis and the death of the invading bacterium. The O-acetylation of N-acetylmuramoyl residues within peptidoglycan precludes the productive binding of lysozyme, and in doing so renders it inactive. This modification has been shown to be an important virulence factor in pathogens such as Staphylococcus aureus and Neisseria gonorrhoeae and is currently being investigated as a novel target for anti-virulence therapies. This article reviews interactions made between peptidoglycan and the host immune system, specifically with respect to lysozyme, and how the O-acetylation of the peptidoglycan interrupts these interactions, leading to increased pathogenicity.

Funder

Canadian Glycomics Network

Canadian Institutes of Health Research

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Reference92 articles.

1. Antimicrobial Resistance: Global Report on Surveillancehttps://apps.who.int/iris/bitstream/handle/10665/112642/9789241564748_eng.pdf?sequence=1

2. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibioticshttps://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf

3. Antibacterial drug discovery in the resistance era

4. Mechanistic Pathways for Peptidoglycan O-Acetylation and De-O-Acetylation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3