Novel Type IV Secretion System Involved in Propagation of Genomic Islands

Author:

Juhas Mario1,Crook Derrick W.1,Dimopoulou Ioanna D.1,Lunter Gerton2,Harding Rosalind M.3,Ferguson David J. P.4,Hood Derek W.5

Affiliation:

1. Clinical Microbiology and Infectious Diseases, Nuffield Department of Clinical Laboratory Sciences, University of Oxford, OX3 9DU Oxford, United Kingdom

2. MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT Oxford, United Kingdom

3. Departments of Zoology and Statistics, University of Oxford, OX1 3TG Oxford, United Kingdom

4. Department of Pathology, University of Oxford, OX3 9DU Oxford, United Kingdom

5. Molecular Infectious Diseases Group, The Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom

Abstract

ABSTRACT Type IV secretion systems (T4SSs) mediate horizontal gene transfer, thus contributing to genome plasticity, evolution of infectious pathogens, and dissemination of antibiotic resistance and other virulence traits. A gene cluster of the Haemophilus influenzae genomic island ICE Hin1056 has been identified as a T4SS involved in the propagation of genomic islands. This T4SS is novel and evolutionarily distant from the previously described systems. Mutation analysis showed that inactivation of key genes of this system resulted in a loss of phenotypic traits provided by a T4SS. Seven of 10 mutants with a mutation in this T4SS did not express the type IV secretion pilus. Correspondingly, disruption of the genes resulted in up to 100,000-fold reductions in conjugation frequencies compared to those of the parent strain. Moreover, the expression of this T4SS was found to be positively regulated by one of its components, the tfc24 gene. We concluded that this gene cluster represents a novel family of T4SSs involved in propagation of genomic islands.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3