Cell Cycle Association of the Retinoblastoma Protein Rb and the Histone Demethylase LSD1 with the Epstein-Barr Virus Latency Promoter Cp

Author:

Chau Charles M.1,Deng Zhong1,Kang Hyojueng1,Lieberman Paul M.1

Affiliation:

1. The Wistar Institute, Philadelphia, Pennsylvania 19104

Abstract

ABSTRACT The Epstein-Barr virus C promoter (Cp) regulates the major multicistronic transcript encoding the EBNA-LP, 1, 2, and 3 genes required for B-cell proliferation during latency. The growth-transforming potential of these viral genes suggests that they must be tightly regulated with the host cell cycle and differentiation process. To better understand Cp regulation, we used DNA affinity purification to identify cellular and viral proteins that bind to Cp in latently infected cells. Several previously unknown factors were identified, including the cell cycle regulatory proteins E2F1 and Rb. E2F1 bound to a specific site in Cp located in the core Cp region 3′ of the known EBNA2-responsive RBP-Jk (CSL, CBF1) binding site. The histone H3 K4 demethylase LSD1 (BCC110) was also identified by DNA affinity and was shown to form a stable complex with Rb. Coimmunoprecipitation assays demonstrated that E2F1, Rb, and LSD1 bind to Cp in a cell cycle-dependent manner. Rb and LSD1 binding to Cp increased after the S phase, corresponding to a decrease in histone H3 K4 methylation and Cp transcription. Coimmunoprecipitation and immunofluorescence assays reveal that LSD1 interacts with Rb. Surprisingly, LSD1 did not coimmunoprecipitate with E2F1, suggesting that it associates with Rb independently of E2F1. Depletion of LSD1 by small interfering RNAs inhibited Cp basal transcription levels, and overexpression of LSD1 altered the cell cycle profile in p53-positive (p53 + ), but not p53-negative (p53 ), HCT cells. These findings indicate that Cp is a cell cycle-regulated promoter that is under the control of Rb and the histone demethylase LSD1 in multiple latency types.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3