Targeting the LSD1-G9a-ER Stress Pathway as a Novel Therapeutic Strategy for Esophageal Squamous Cell Carcinoma

Author:

Wang Hongxiao123,Song Zijun1,Xie Enjun1,Chen Junyi1,Tang Biyao1,Wang Fudi12ORCID,Min Junxia1ORCID

Affiliation:

1. The First Affiliated Hospital, The Fourth Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China

2. The First Affiliated Hospital, The Second Affiliated Hospital, Basic Medical Sciences, School of Public Health, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China

3. Department of Pathology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou 450003, China

Abstract

Despite recent advances in the management and treatment of esophageal squamous cell carcinoma (ESCC), the prognosis remains extremely poor, and current nonsurgical treatment options are limited. To identify new therapeutic targets, we screened a curated library of epigenetic compounds using a panel of cancer cell lines and found that coinhibiting the histone demethylase LSD1 and the histone methyltransferase G9a potently suppresses cell growth; similar results were obtained by knocking down both LSD1 and G9a expression. Importantly, we also found that inhibiting LSD1 and G9a significantly decreased tumor growth in a xenograft mouse model with ESCC cell lines. To examine the clinical relevance of these findings, we performed immunohistochemical analyses of microarray profiling data obtained from human esophageal squamous cancer tissues and found that both LSD1 and G9a are upregulated in cancer tissues compared to healthy tissues, and this increased expression was significantly correlated with poor prognosis. Mechanistically, we discovered that inhibiting LSD1 and G9a induces cell death via S-phase arrest and apoptosis, and cotargeting ER stress pathways increased this effect both in vitro and in vivo . Taken together, these findings provide compelling evidence that targeting LSD1, G9a, and ER stress-related pathways may serve as a viable therapeutic strategy for ESCC.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3