Another Brick in the Wall: a Rhamnan Polysaccharide Trapped inside Peptidoglycan of Lactococcus lactis

Author:

Sadovskaya Irina1,Vinogradov Evgeny2,Courtin Pascal3,Armalyte Julija3,Meyrand Mickael3,Giaouris Efstathios3,Palussière Simon3,Furlan Sylviane3,Péchoux Christine4,Ainsworth Stuart5,Mahony Jennifer56,van Sinderen Douwe56,Kulakauskas Saulius3,Guérardel Yann7,Chapot-Chartier Marie-Pierre3

Affiliation:

1. Équipe BPA, Université du Littoral Côte d’Opale, Institut Régional Charles Violette EA 7394, USC Anses-ULCO, Boulogne-sur-Mer, France

2. Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada

3. Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France

4. INRA, UMR 1313 GABI, Plate-forme MIMA2, Jouy-en-Josas, France

5. School of Microbiology, University College Cork, Cork, Ireland

6. APC Microbiome Institute, University College Cork, Cork, Ireland

7. Université de Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale & Fonctionnelle, Lille, France

Abstract

ABSTRACT Polysaccharides are ubiquitous components of the Gram-positive bacterial cell wall. In Lactococcus lactis , a polysaccharide pellicle (PSP) forms a layer at the cell surface. The PSP structure varies among lactococcal strains; in L. lactis MG1363, the PSP is composed of repeating hexasaccharide phosphate units. Here, we report the presence of an additional neutral polysaccharide in L. lactis MG1363 that is a rhamnan composed of α- l -Rha trisaccharide repeating units. This rhamnan is still present in mutants devoid of the PSP, indicating that its synthesis can occur independently of PSP synthesis. High-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) analysis of whole bacterial cells identified a PSP at the surface of wild-type cells. In contrast, rhamnan was detected only at the surface of PSP-negative mutant cells, indicating that rhamnan is located underneath the surface-exposed PSP and is trapped inside peptidoglycan. The genetic determinants of rhamnan biosynthesis appear to be within the same genetic locus that encodes the PSP biosynthetic machinery, except the gene tagO encoding the initiating glycosyltransferase. We present a model of rhamnan biosynthesis based on an ABC transporter-dependent pathway. Conditional mutants producing reduced amounts of rhamnan exhibit strong morphological defects and impaired division, indicating that rhamnan is essential for normal growth and division. Finally, a mutation leading to reduced expression of lcpA , encoding a protein of the LytR-CpsA-Psr (LCP) family, was shown to severely affect cell wall structure. In lcpA mutant cells, in contrast to wild-type cells, rhamnan was detected by HR-MAS NMR, suggesting that LcpA participates in the attachment of rhamnan to peptidoglycan. IMPORTANCE In the cell wall of Gram-positive bacteria, the peptidoglycan sacculus is considered the major structural component, maintaining cell shape and integrity. It is decorated with other glycopolymers, including polysaccharides, the roles of which are not fully elucidated. In the ovococcus Lactococcus lactis , a polysaccharide with a different structure between strains forms a layer at the bacterial surface and acts as the receptor for various bacteriophages that typically exhibit a narrow host range. The present report describes the identification of a novel polysaccharide in the L. lactis cell wall, a rhamnan that is trapped inside the peptidoglycan and covalently bound to it. We propose a model of rhamnan synthesis based on an ABC transporter-dependent pathway. Rhamnan appears as a conserved component of the lactococcal cell wall playing an essential role in growth and division, thus highlighting the importance of polysaccharides in the cell wall integrity of Gram-positive ovococci.

Funder

INRA

Région Ile-de-France

Technology Innovation Development Award

Starting Investigator Research Grant

Science Foundation Ireland

Agence Nationale de la Recherche

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3