Characteristics of Lactococcus petauri GB97 lysate isolated from porcine feces and its in vitro and in vivo effects on inflammation, intestinal barrier function, and gut microbiota composition in mice

Author:

Yoon Ki-Nam12ORCID,Lee Soo-Jeong3456ORCID,Keum Gi Beom7ORCID,Song Ki-Young1,Park Jong-Heum1,Song Beom-Seok1,Yu Seung Yeob8,Cho Jae Hyoung7,Kim Eun Sol7,Doo Hyunok7,Kwak Jinok7,Kim Sheena7,Eun Jong-Bang2,Lee Ju Huck8ORCID,Kim Hyeun Bum7ORCID,Lee Ju-Hoon3456ORCID,Kim Jae-Kyung1ORCID

Affiliation:

1. Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute , Jeongeup-si, South Korea

2. Department of Food Science and Technology, Graduate School of Chonnam National University , Gwangju, South Korea

3. Department of Food and Animal Biotechnology, Seoul National University , Seoul, South Korea

4. Department of Agricultural Biotechnology, Seoul National University , Seoul, South Korea

5. Research Institute of Agriculture and Life Sciences, Seoul National University , Seoul, South Korea

6. Center for Food and Bioconvergence, Seoul National University , Seoul, South Korea

7. Department of Animal Resources Science, Dankook University , Cheonan, South Korea

8. Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology , Jeongeup-si, South Korea

Abstract

ABSTRACT Weaning in piglet management is important to improve pork production. Controlling gut inflammation and colitis is important in managing growth performance in piglets after weaning. Previously, we found that treatment with a lysate of Lactococcus petauri GB97 (LPL97) from porcine feces alleviated lipopolysaccharide-induced inflammatory response in RAW 264.7 cells. Here, we aimed to evaluate the exact role of LPL97 in modulating inflammation, epithelial barrier function, and gut microbiota composition, both in vitro and in vivo , in an experimental dextran sulfate sodium (DSS)-induced colitis mouse model. Compared to control colitis mice, LPL97 inhibited shortening of the colon, percentage body weight reduction, and mucosal damage. Moreover, LPL97 treatment downregulated the serum levels of pro-inflammatory factors and their mRNA expression in colon tissue but increased the levels of anti-inflammatory cytokine. LPL97 also reduced intestinal permeability by increasing the expression levels of tight junction (TJ) proteins in colon tissues. Additionally, 16S rRNA gene analysis demonstrated the effect of LPL97 treatment on DSS-induced inflammation via microbiome changes in the mouse intestine. At the genus level, the relative abundance of Mucispirillum , Intestinimonas , Staphylococcus , and Pseudomonas , which was significantly higher in the DSS-treated group than in the control group, decreased significantly in the LPL97 group compared to that in the DSS group. This study provides evidence that LPL97 can prevent intestinal inflammation and strengthen the integrity of the intestinal barrier by altering the gut microbiota, suggesting its promising potential for prophylaxis and treatment of colitis in pig farming. IMPORTANCE Weaning is a crucial step in piglet management to improve pork production. During the weaning phase, disruption of epithelial barrier function and intestinal inflammation can lead to decreased absorption of nutrients and diarrhea. Therefore, maintaining a healthy intestine, epithelial barrier function, and gut microbiota composition in this crucial phase is strategic for optimal weaning in pigs. We isolated a lysate of Lactococcus petauri GB97 (LPL97) from healthy porcine feces and evaluated its anti-inflammatory activities, barrier integrity, and gut microbial changes in LPS-induced murine macrophages and DSS-induced colitis mice. We found that LPL97 regulated the immune response by downregulating the TLR4/NF-κB/MAPK signaling pathway both in vitro and in vivo . Furthermore, LPL97 alleviated the disruption of intestinal epithelial integrity and gut microbiota dysbiosis in colitis mice. This study indicates that LPL97 has the potential to be developed as an alternative feed additive to antibiotics for the swine industry.

Funder

National Research Foundation of Korea

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3