Metabolic Flux Control at the Pyruvate Node in an Anaerobic Escherichia coli Strain with an Active Pyruvate Dehydrogenase

Author:

Wang Qingzhao1,Ou Mark S.1,Kim Y.1,Ingram L. O.1,Shanmugam K. T.1

Affiliation:

1. Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611

Abstract

ABSTRACT During anaerobic growth of Escherichia coli , pyruvate formate-lyase (PFL) and lactate dehydrogenase (LDH) channel pyruvate toward a mixture of fermentation products. We have introduced a third branch at the pyruvate node in a mutant of E. coli with a mutation in pyruvate dehydrogenase (PDH*) that renders the enzyme less sensitive to inhibition by NADH. The key starting enzymes of the three branches at the pyruvate node in such a mutant, PDH*, PFL, and LDH, have different metabolic potentials and kinetic properties. In such a mutant (strain QZ2), pyruvate flux through LDH was about 30%, with the remainder of the flux occurring through PFL, indicating that LDH is a preferred route of pyruvate conversion over PDH*. In a pfl mutant (strain YK167) with both PDH* and LDH activities, flux through PDH* was about 33% of the total, confirming the ability of LDH to outcompete the PDH pathway for pyruvate in vivo . Only in the absence of LDH (strain QZ3) was pyruvate carbon equally distributed between the PDH* and PFL pathways. A pfl mutant with LDH and PDH* activities, as well as a pfl ldh double mutant with PDH* activity, had a surprisingly low cell yield per mole of ATP ( Y ATP ) (about 7.0 g of cells per mol of ATP) compared to 10.9 g of cells per mol of ATP for the wild type. The lower Y ATP suggests the operation of a futile energy cycle in the absence of PFL in this strain. An understanding of the controls at the pyruvate node during anaerobic growth is expected to provide unique insights into rational metabolic engineering of E. coli and related bacteria for the production of various biobased products at high rates and yields.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference43 articles.

1. Bisswanger, H., and U. Henning. 1971. Regulatory properties of the pyruvate-dehydrogenase complex from Escherichia coli. Positive and negative cooperativity. Eur. J. Biochem.24:376-384.

2. Bock, A., and G. Sawers. 1996. Fermentation, p. 262-282. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DC.

3. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding

4. Clark, D. P. 1989. The fermentation pathways of Escherichia coli. FEMS Microbiol. Rev.5:223-234.

5. Cronan, J. E., Jr., and D. LaPorte. 1996. Tricarboxylic acid cycle and glyoxalate bypass, p. 206-216. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DC.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3