The necessity of considering enzymes as compartments in constraint-based genome-scale metabolic models

Author:

Yang Xue,Mao Zhitao,Huang Jianfeng,Wang Ruoyu,Dong Huaming,Zhang Yanfei,Ma Hongwu

Abstract

AbstractAs the most widespread and practical digital representations of living cells, metabolic network models have become increasingly precise and accurate. By integrating cellular resources and abiotic constraints, the prediction functions were significantly expanded in recent years. However, we found that if unreasonable modeling methods were adopted due to the lack of consideration of biological knowledge, the conflicts between stoichiometric and other constraints, such as thermodynamic feasibility and enzyme resource availability, would lead to distorted predictions. In this work, we investigated a prediction anomaly of EcoETM, a constraints-based metabolic network model, and introduced the idea of enzyme compartmentalization into the analysis process. Through rational combination of reactions, we avoid the false prediction of pathway feasibility caused by the unrealistic assumption of free intermediate metabolites. This allowed us to correct the pathway structures of L-serine and L-tryptophan. Specific analysis explains the application method of EcoETM-like model, demonstrating its potential and value in correcting the prediction results in pathway structure by resolving the conflict between different constraints and incorporating the evolved roles of enzymes as reaction compartments. Notably, this work also reveals the trade-off between product yield and thermodynamic feasibility. Finally, we provide a preliminary comparison of the thermodynamic feasibility of ammonia and glutamine as amino donors, which revealed that the direct utilization of ammonia does not have a decisive impact on the thermodynamic feasibility of the anthranilate pathway. Our work is of great value for the structural improvement of constraints-based models.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3