Affiliation:
1. Department of Plant Pathology and Microbiology
2. Intercollegiate Faculty of Virology, Texas A&M University, 2132 TAMU, College Station, Texas 77843
Abstract
ABSTRACTTheTomato bushy stunt virus(TBSV)-encodedp19protein (P19) is widely used as a robust tool to suppress RNA interference (RNAi) in various model organisms. P19 dimers appropriate 21-nucleotide (nt) duplex short interfering RNAs (siRNAs) generated by Dicer presumably to prevent programming of the RNA-induced silencing complex (RISC). In the context of virus infection, this model predicts that P19 mutants compromised for siRNA binding cannot prevent RISC-mediated degradation of TBSV RNA and thus reduce viral pathogenicity. To test this, we used P19/43 (R→W), which is less pathogenic than wild-type P19 (wtP19), and P19/75-78 (RR→GG), with pathogenicity properties (i.e., viral spread and symptom induction) comparable to those of a P19-null mutant. We demonstrate that P19/43 still suppresses RNAi-mediated viral RNA degradation in infectedNicotiana benthamiana, while P19/75-78 is unable to prevent this clearance of viral RNA, leading to an irreversible recovery phenotype. Gel filtration and immunoprecipitation assays show that at the onset of the infection, wtP19, P19/43, and P19/75-78 readily accumulate, and they form dimers. The wtP19 is stably associated with duplex ∼21-nt TBSV siRNAs, while P19/75-78 does not bind these molecules, and the electrostatic interaction of P19/43 with siRNAs is perturbed for ∼21-nt duplexes but not for longer siRNAs. This is the first clear demonstration of a direct correlation between a novel structurally orchestrated siRNA binding of an RNAi suppressor and its roles in viral pathogenesis. The findings should be particularly valuable for the RNAi field in general because the P19 mutants enable precise determination of siRNA appropriation effects.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献