A tomato bushy stunt virus–based vector for simultaneous editing and sensing to survey the host antiviral RNA silencing machinery

Author:

DeMell April12ORCID,Mendoza Maria R13,Scholthof Herman B1ORCID

Affiliation:

1. Department of Plant Pathology and Microbiology, Texas A&M University , College Station, TX 77843 , USA

2. Plant Biology, UC Davis Present address: , Davis, CA , USA

3. Fujifilm Diosynth Biotechnologies Texas Present address: , College Station, TX , USA

Abstract

Abstract A tomato bushy stunt virus (TBSV)–derived vector system was applied for the delivery of CRISPR/Cas9 gene editing materials, to facilitate rapid, transient assays of host–virus interactions involved in the RNA silencing pathway. Toward this, single guide RNAs designed to target key components of the virus-induced host RNA silencing pathway (AGO2, DCL2, HEN1) were inserted into TBSV-based GFP-expressing viral vectors TBSV-GFP (TG) and its P19 defective mutant TGΔP19. This produced rapid, efficient, and specific gene editing in planta. Targeting AGO2, DCL2, or HEN1 partially rescued the lack of GFP accumulation otherwise associated with TGΔP19. Since the rescue phenotypes are normally only observed in the presence of the P19 silencing suppressor, the results support that the DCL2, HEN1, and AGO2 proteins are involved in anti-TBSV RNA silencing. Additionally, we show that knockdown of the RNA silencing machinery increases cargo expression from a nonviral binary Cas9 vector. The TBSV-based gene editing technology described in this study can be adapted for transient heterologous expression, rapid gene function screens, and molecular interaction studies in many plant species considering the wide host range of TBSV. In summary, we demonstrate that a plant virus can be used to establish gene editing while simultaneously serving as an accumulation sensor for successful targeting of its homologous antiviral silencing machinery components.

Funder

USDA

NIFA

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3