A Long T · A Tract in the upp Initially Transcribed Region Is Required for Regulation of upp Expression by UTP-Dependent Reiterative Transcription in Escherichia coli

Author:

Cheng Yulin1,Dylla Sara M.1,Turnbough Charles L.1

Affiliation:

1. Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294

Abstract

ABSTRACT In Escherichia coli , pyrimidine-mediated regulation of upp expression occurs by UTP-sensitive selection of alternative transcriptional start sites, which produces transcripts that differ in the ability to be elongated. The upp initially transcribed region contains the sequence GATTTTTTTTG (nontemplate strand). Initiation can occur at either the first or the second base in this sequence (designated G6 and A7, with numbering from the promoter −10 region). High intracellular UTP levels favor initiation at position A7; however, the resulting transcripts are subject to reiterative transcription (i.e., repetitive UMP addition) within the 8-bp T · A tract in the initially transcribed region and are aborted. In contrast, low intracellular UTP levels favor initiation at position G6, which results in transcripts that can, in part, avoid reiterative transcription and be elongated normally. In this study, we examined the regulatory requirement for the long T · A tract in the upp initially transcribed region. We constructed upp promoter mutations that shorten the T · A tract to 7, 6, 5, 4, 3, or 2 bp and examined the effects of these mutations on upp expression and regulation. The results indicate that pyrimidine-mediated regulation is gradually reduced as the T · A tract is shortened from 7 to 3 bp; at which point regulation ceases. This reduction in regulation is due to large-percentage increases in upp expression in cells grown under conditions of pyrimidine excess. Quantitation of cellular transcripts and in vitro transcription studies indicate that the observed effects of a shortened T · A tract on upp expression and regulation are due to increases in the fraction of both G6- and A7-initiated transcripts that avoid reiterative transcription and are elongated normally.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3