Structural basis of reiterative transcription from the pyrG and pyrBI promoters by bacterial RNA polymerase

Author:

Shin Yeonoh,Hedglin Mark,Murakami Katsuhiko S.ORCID

Abstract

ABSTRACTReiterative transcription is a non-canonical form of RNA synthesis by RNA polymerase in which a ribonucleotide specified by a single base in the DNA template is repetitively added to the nascent RNA transcript. We previously determined the X-ray crystal structure of the bacterial RNA polymerase engaged in reiterative transcription from the pyrG promoter, which contains 8 poly-G RNA bases synthesized using 3 C bases in the DNA as a template and extends RNA without displacement of the promoter recognition σ factor from the core enzyme. In this study, we determined a series of transcript initiation complex structures from the pyrG promoter using soak trigger freeze X-ray crystallography. We also performed biochemical assays to monitor template DNA translocation during RNA synthesis from the pyrG promoter and in vitro transcription assays to determine the length of poly-G RNA from the pyrG promoter variants. Structures and biochemical assays revealed how the RNA transcript from the pyrG promoter is guided toward the Rifampin-binding pocket then the main channel of RNA polymerase and provided insight into RNA slippage during reiterative transcription of the pyrG promoter. Lastly, we determined a structure of a reiterative transcription complex at the pyrBI promoter and revealed an alternative mechanism of RNA slippage and extension requiring the σ dissociation from the core enzyme.SIGNIFICANCE STATEMENTRNA polymerase synthesizes multiple bases of RNA using a single base of the template DNA due to slippage between RNA transcript and template DNA. This noncanonical RNA synthesis is called “reiterative transcription,” playing several regulatory roles cellular organisms and viruses. In this study, we determined a series of X-ray crystal structures of a bacterial RNA polymerase engaged in reiterative transcription and characterized a role of template DNA during reiterative transcription by biochemical assays. Our study revealed how RNA slips on template DNA and how RNA polymerase and template DNA determine length of reiterative RNA product. We also provide insights into the regulation of gene expression using two alternative ways of reiterative transcription.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3