Regulated Secretion of YopN by the Type III Machinery of Yersinia enterocolitica

Author:

Cheng Luisa W.1,Kay Olga1,Schneewind Olaf1

Affiliation:

1. Department of Microbiology & Immunology, UCLA School of Medicine, University of California, Los Angeles, California 90095

Abstract

ABSTRACT During infection, Yersinia enterocolitica exports Yop proteins via a type III secretion pathway. Secretion is activated when the environmental concentration of calcium ions is below 100 μM (low-calcium response). Yersiniae lacking yopN (lcrE), yscB, sycN , or tyeA do not inactivate the type III pathway even when the concentration of calcium is above 100 μM (calcium-blind phenotype). Purified YscB and SycN proteins form cytoplasmic complexes that bind a region including amino acids 16 to 100 of YopN, whereas TyeA binds YopN residues 101 to 294. Translational fusion of yopN gene sequences to the 5′ end of the npt reporter generates hybrid proteins that are transported by the type III pathway. The signal necessary and sufficient for the type III secretion of hybrid proteins is located within the first 15 codons of yopN . Expression of plasmid-borne yopN , but not of yopN 1–294 - npt , complements the calcium-blind phenotype of yopN mutants. Surprisingly, yopN mutants respond to environmental changes in calcium concentration and secrete YopN 1–294 -Npt in the absence but not in the presence of calcium. tyeA is required for the low-calcium regulation of YopN 1–294 -Npt secretion, whereas sycN and yscB mutants fail to secrete YopN 1–294 -Npt in the presence of calcium. Experiments with yopN-npt fusions identified two other signals that regulate the secretion of YopN. yopN codons 16 to 100 prevent the entry of YopN into the type III pathway, a negative regulatory effect that is overcome by expression of yscB and sycN . The portion of YopN encoded by codons 101 to 294 prevents transport of the polypeptide across the bacterial double membrane envelope in the presence of functional tyeA . These data support a model whereby YopN transport may serve as a regulatory mechanism for the activity of the type III pathway. YscB/SycN binding facilitates the initiation of YopN into the type III pathway, whereas TyeA binding prevents transport of the polypeptide across the bacterial envelope. Changes in the environmental calcium concentration relieve the TyeA-mediated regulation, triggering YopN transport and activating the type III pathway.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3