The NS Segment of an H5N1 Highly Pathogenic Avian Influenza Virus (HPAIV) Is Sufficient To Alter Replication Efficiency, Cell Tropism, and Host Range of an H7N1 HPAIV

Author:

Ma Wenjun1,Brenner Dominique1,Wang Zhongfang1,Dauber Bianca2,Ehrhardt Christina3,Högner Katrin4,Herold Susanne4,Ludwig Stephan3,Wolff Thorsten2,Yu Kangzhen5,Richt Jürgen A.6,Planz Oliver7,Pleschka Stephan1

Affiliation:

1. Institute of Medical Virology, Justus Liebig University, D-35392 Giessen, Germany

2. Robert Koch Institute, P15, Nordufer 20, D-13353 Berlin, Germany

3. Institute for Molecular Virology, Westfälische Wilhelms University, von Esmarch Strasse 56, D-48149 Münster, Germany

4. Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine and Infectious Diseases, Justus Liebig University, Giessen, Germany

5. Harbin Veterinary Research Institute, Harbin 150001, People's Republic of China

6. Institute for Virology, Justus Liebig University, D-35392 Giessen, Germany

7. Friedrich Loeffler Institute, Federal Research Institute for Animal Health, Institute for Immunology, Paul Ehrlich Strasse 28, D-72076 Tübingen, Germany

Abstract

ABSTRACT A reassortant avian influenza virus (designated FPV NS GD), carrying the NS-segment of the highly pathogenic avian influenza virus (HPAIV) strain A/Goose/Guangdong/1/96 (GD; H5N1) in the genetic background of the HPAIV strain A/FPV/Rostock/34 (FPV; H7N1), was rescued by reverse genetics. Remarkably, in contrast to the recombinant wild-type FPV (rFPV), the reassortant virus was able to replicate more efficiently in different human cell lines and primary mouse epithelia cells without prior adaptation. Moreover, FPV NS GD caused disease and death in experimentally infected mice and was detected in mouse lungs; in contrast, rFPV was not able to replicate in mice effectively. These results indicated an altered host range and increased virulence. Furthermore FPV NS GD showed pronounced pathogenicity in chicken embryos. In an attempt to define the molecular basis for the apparent differences, we determined that NS1 proteins of the H5N1 and H7N1 strains bound the antiviral kinase PKR and the F2F3 domain of cleavage and polyadenylation specificity factor 30 (CPSF30) with comparable efficiencies in vitro . However, FPV NS GD infection resulted in (i) increased expression of NS1, (ii) faster and stronger PKR inhibition, and (iii) stronger beta interferon promoter inhibition than rFPV. Taken together, the results shed further light on the importance of the NS segment of an H5N1 strain for viral replication, molecular pathogenicity, and host range of HPAIVs and the possible consequences of a reassortment between naturally occurring H7 and H5 type HPAIVs.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3