The Interface between Hepatitis B Virus Capsid Proteins Affects Self-Assembly, Pregenomic RNA Packaging, and Reverse Transcription

Author:

Tan Zhenning,Pionek Karolyn,Unchwaniwala Nuruddin,Maguire Megan L.,Loeb Daniel D.,Zlotnick Adam

Abstract

ABSTRACTHepatitis B virus (HBV) capsid proteins (Cps) assemble around the pregenomic RNA (pgRNA) and viral reverse transcriptase (P). pgRNA is then reverse transcribed to double-stranded DNA (dsDNA) within the capsid. The Cp assembly domain, which forms the shell of the capsid, regulates assembly kinetics and capsid stability. The Cp, via its nucleic acid-binding C-terminal domain, also affects nucleic acid organization. We hypothesize that the structure of the capsid may also have a direct effect on nucleic acid processing. Using structure-guided design, we made a series of mutations at the interface between Cp subunits that change capsid assembly kinetics and thermodynamics in a predictable manner. Assembly in cell culture mirroredin vitroactivity. However, all of these mutations led to defects in pgRNA packaging. The amount of first-strand DNA synthesized was roughly proportional to the amount of RNA packaged. However, the synthesis of second-strand DNA, which requires two template switches, was not supported by any of the substitutions. These data demonstrate that the HBV capsid is far more than an inert container, as mutations in the assembly domain, distant from packaged nucleic acid, affect reverse transcription. We suggest that capsid molecular motion plays a role in regulating genome replication.IMPORTANCEThe hepatitis B virus (HBV) capsid plays a central role in the virus life cycle and has been studied as a potential antiviral target. The capsid protein (Cp) packages the viral pregenomic RNA (pgRNA) and polymerase to form the HBV core. The role of the capsid in subsequent nucleic acid metabolism is unknown. Here, guided by the structure of the capsid with bound antiviral molecules, we designed Cp mutants that enhanced or attenuated the assembly of purified Cpin vitro. In cell culture, assembly of mutants was consistent with theirin vitrobiophysical properties. However, all of these mutations inhibited HBV replication. Specifically, changing the biophysical chemistry of Cp caused defects in pgRNA packaging and synthesis of the second strand of DNA. These results suggest that the HBV Cp assembly domain potentially regulates reverse transcription, extending the activities of the capsid protein beyond its presumed role as an inert compartment.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference63 articles.

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3