Regulatory Role of the Conserved Stem-Loop Structure at the 5′ End of Collagen α1(I) mRNA

Author:

Stefanovic B.1,Hellerbrand C.1,Brenner D. A.1

Affiliation:

1. Departments of Medicine and Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

Abstract

ABSTRACT Three fibrillar collagen mRNAs, α1(I), α2(I), and α1(III), are coordinately upregulated in the activated hepatic stellate cell (hsc) in liver fibrosis. These three mRNAs contain sequences surrounding the start codon that can be folded into a stem-loop structure. We investigated the role of this stem-loop structure in expression of collagen α1(I) reporter mRNAs in hsc’s and fibroblasts. The stem-loop dramatically decreases accumulation of mRNAs in quiescent hsc’s and to a lesser extent in activated hsc’s and fibroblasts. The stem-loop decreases mRNA stability in fibroblasts. In activated hsc’s and fibroblasts, a protein complex binds to the stem-loop, and this binding requires the presence of a 7mG cap on the RNA. Placing the 3′ untranslated region (UTR) of collagen α1(I) mRNA in a reporter mRNA containing this stem-loop further increases the steady-state level in activated hsc’s. This 3′ UTR binds αCP, a protein implicated in increasing stability of collagen α1(I) mRNA in activated hsc’s (B. Stefanovic, C. Hellerbrand, M. Holcik, M. Briendl, S. A. Liebhaber, and D. A. Brenner, Mol. Cell. Biol. 17:5201–5209, 1997). A set of protein complexes assembles on the 7mG capped stem-loop RNA, and a 120-kDa protein is specifically cross-linked to this structure. Thus, collagen α1(I) mRNA is regulated by a complex interaction between the 5′ stem-loop and the 3′ UTR, which may optimize collagen production in activated hsc’s.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3