Differential and Inefficient Splicing of a Broadly Expressed Drosophila erect wing Transcript Results in Tissue-Specific Enrichment of the Vital EWG Protein Isoform

Author:

Koushika Sandhya P.1,Soller Matthias1,DeSimone Susan M.1,Daub Douglas M.1,White Kalpana1

Affiliation:

1. Department of Biology and Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454

Abstract

ABSTRACT In this report, we document an unusual mode of tissue-enriched gene expression that is primarily mediated by alternative and inefficient splicing. We have analyzed posttranscriptional regulation of the Drosophila erect wing gene, which provides a vital neuronal function and is essential for the formation of certain muscles. Its predominant protein product, the 116-kDa EWG protein, a putative transcriptional regulator, can provide all known erect wing -associated functions. Moreover, consistent with its function, the 116-kDa protein is highly enriched in neurons and is also observed transiently in migrating myoblasts. In contrast to the protein distribution, we observed that erect wing transcripts are present in comparable levels in neuron-enriched heads and neuron-poor bodies of adult Drosophila . Our analyses shows that erect wing transcript consists of 10 exons and is alternatively spliced and that a subset of introns are inefficiently spliced. We also show that the 116-kDa EWG protein-encoding splice isoform is head enriched. In contrast, bodies have lower levels of transcripts that can encode the 116-kDa protein and greater amounts of unprocessed erect wing RNA. Thus, the enrichment of the 116-kDa protein in heads is ensured by tissue-specific alternative and inefficient splicing and not by transcriptional regulation. Furthermore, this regulation is biologically important, as an increased level of the 116-kDa protein outside the nervous system is lethal.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3