Affiliation:
1. Institute of Molecular Biology and Biochemistry and Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada, 1 and
2. Department of Bioengineering, Soka University, Hachioji, Tokyo 192, Japan2
Abstract
ABSTRACT
Eight different amber suppressor tRNA (suptRNA) mutations in the nematode
Caenorhabditis elegans
have been isolated; all are derived from members of the tRNA
Trp
gene family (K. Kondo, B. Makovec, R. H. Waterston, and J. Hodgkin, J. Mol. Biol. 215:7–19, 1990). Genetic assays of suppressor activity suggested that individual tRNA genes were differentially expressed, probably in a tissue- or developmental stage-specific manner. We have now examined the expression of representative members of this gene family both in vitro, using transcription in embryonic cell extracts, and in vivo, by assaying suppression of an amber-mutated
lacZ
reporter gene in animals carrying different suptRNA mutations. Individual wild-type tRNA
Trp
genes and their amber-suppressing counterparts appear to be transcribed and processed identically in vitro, suggesting that the behavior of suptRNAs should reflect wild-type tRNA expression. The levels of transcription of different suptRNA genes closely parallel the extent of genetic suppression in vivo. The results suggest that differential expression of tRNA genes is most likely at the transcriptional rather than the posttranscriptional level and that 5′ flanking sequences play a role in vitro, and probably in vivo as well. Using suppression of a
lacZ
(Am) reporter gene as a more direct assay of suptRNA activity in individual cell types, we have again observed differential expression which correlates with genetic and in vitro transcription results. This provides a model system to more extensively study the basis for differential expression of this tRNA gene family.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献