High-frequency mobilization of broad-host-range plasmids into Neisseria gonorrhoeae requires methylation in the donor

Author:

Butler C A1,Gotschlich E C1

Affiliation:

1. Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York 10021.

Abstract

Antibiotic resistance in Neisseria gonorrhoeae has been associated with the acquisition of R plasmids from heterologous organisms. The broad-host-range plasmids of incompatibility groups P (IncP) and Q (IncQ) have played a role in this genetic exchange in nature. We have utilized derivatives of RSF1010 (IncQ) and RP1 (IncP) to demonstrate that the plethora of restriction barriers associated with the gonococci markedly reduces mobilization of plasmids from Escherichia coli into strains F62 and PGH 3-2. Partially purified restriction endonucleases from these gonococcal strains can digest RSF1010 in vitro. Protection of RSF1010-km from digestion by gonococcal enzymes purified from strain F62 is observed when the plasmid is isolated from E. coli containing a coresident plasmid, pCAL7. Plasmid pCAL7 produces a 5'-MECG-3' cytosine methylase (M.SssI). The M.SssI methylase only partially protects RSF1010-km from digestion by restriction enzymes from strain PGH 3-2. Total protection of RSF1010-km from PGH 3-2 restriction requires both pCAL7 and a second coresident plasmid, pFnuDI, which produces a 5'-GGMECC-3' cytosine methylase. When both F62 and PGH 3-2 are utilized as recipients in heterospecific matings with E. coli, mobilization of RSF1010 from strains containing the appropriate methylases into the gonococci occurs at frequencies 4 orders of magnitude higher than from strains without the methylases. Thus, protection of RSF1010 from gonococcal restriction enzymes in vitro correlates with an increase in the conjugal frequency. These data indicate that restriction is a major barrier against efficient conjugal transfer between N. gonorrhoeae and heterologous hosts.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3