The Human Papillomavirus Type 18 E2 Protein Is a Cell Cycle-Dependent Target of the SCF Skp2 Ubiquitin Ligase

Author:

Bellanger Sophie1,Tan Chye Ling1,Nei Wenlong1,He Ping Ping1,Thierry Françoise1

Affiliation:

1. Papillomavirus Regulation and Cancer, Institute of Medical Biology, A*Star, Biopolis, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648

Abstract

ABSTRACT The human papillomavirus type 18 (HPV-18) E2 gene is inactivated in cervical carcinoma after integration of the viral DNA into the host cellular genome. Since E2 represses the transcription of the two viral oncogenes E6 and E7, integration which allows their strong expression is considered a major step in transformation by HPV. We show here that E2 is specifically degraded at the end of the G 1 phase in a Brd4-independent manner, implying that its regulatory functions are cell cycle dependent. Degradation of E2 occurs via the Skp1/Cullin1/F-box Skp2 (SCF Skp2 ) ubiquitin ligase, since silencing of Skp2 induces stabilization of E2. In addition, the amino-terminal domain of E2 can interact with Skp2 as shown by coimmunoprecipitation experiments. We previously showed that E2 inhibits the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase, leading to accumulation of several of its substrates. We demonstrate here that Skp2, which is a known APC/C substrate in G 1 , is also stabilized by E2. Therefore, by negative feedback, SCF Skp2 activation could lead to E2 degradation and E6/E7 expression specifically in the late G 1 phase. Moreover, since the SCF Skp2 can trigger S-phase entry and Skp2 itself is a known oncogene, we believe that E2-mediated accumulation of Skp2, together with E2 degradation leading to putative release of E6 and E7 inhibition, could induce premature S-phase entry in HPV-infected cells, pointing to a direct role of E2 in the early steps of HPV-mediated transformation.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3