Abstract
Acetyl coenzyme A (acetyl-CoA) carboxylase activity, amount, and mRNA levels increase during the differentiation of 30A-5 preadipocytes to adipocytes. Tumor necrosis factor (TNF) completely prevents this differentiation, with concomitant inhibition of acetyl-CoA carboxylase mRNA accumulation. To investigate the mechanisms by which TNF prevents acetyl-CoA carboxylase mRNA accumulation, we determined the effect of TNF on the transcription rate of the carboxylase gene and the half-life of carboxylase mRNA. Nuclear runoff transcription assays revealed no differences in the number of RNA polymerase molecules actively engaged in transcription of the acetyl-CoA carboxylase gene in preadipocytes, adipocytes, TNF-treated preadipocytes, or at any time during the course of differentiation. However, changes in adipsin, glycerophosphate dehydrogenase, and actin mRNAs, whose levels are also differentiation dependent, can be accounted for in part by changes in the number of polymerase complexes on their respective genes. To determine whether TNF caused a decrease in the stability of carboxylase RNA transcripts, we measured the rate of decay of prelabeled acetyl-CoA carboxylase mRNA. Control and TNF-treated cells showed no difference between the apparent half-lives of acetyl-CoA carboxylase mRNAs (9 h). However, the rate of acetyl-CoA carboxylase mRNA synthesis in vivo was decreased three- to fourfold in the presence of TNF. These data demonstrate that TNF prevents accumulation of acetyl-CoA carboxylase mRNA during preadipocyte differentiation by decreasing the rate of acetyl-CoA carboxylase gene transcription. However, transcriptional control is not due to a change in the number of RNA polymerase complexes actively engaged in carboxylase transcript elongation which could be measured by a number runoff assay. Instead, transcriptional control may be related to the rate at which RNA polymerase traverses the acetyl-CoA carboxylase gene.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献