Evaluation of Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry in Comparison to 16S rRNA Gene Sequencing for Species Identification of Nonfermenting Bacteria

Author:

Mellmann A.1,Cloud J.2,Maier T.3,Keckevoet U.1,Ramminger I.1,Iwen P.4,Dunn J.5,Hall G.6,Wilson D.6,LaSala P.7,Kostrzewa M.3,Harmsen D.8

Affiliation:

1. Institute for Hygiene, University Hospital Muenster, Muenster D-48149, Germany

2. ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah

3. Bruker Daltonik GmbH, Leipzig, Germany

4. Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska

5. Cook Children's Medical Center, Fort Worth, Texas

6. Microbiology, Cleveland Clinic Foundation, Cleveland, Ohio

7. Clinical Microbiology, Department of Pathology, University of Texas Medical Branch, Galveston, Texas

8. Department for Periodontology, University Hospital Muenster, Muenster D-48149, Germany

Abstract

ABSTRACT Nonfermenting bacteria are ubiquitous environmental opportunists that cause infections in humans, especially compromised patients. Due to their limited biochemical reactivity and different morphotypes, misidentification by classical phenotypic means occurs frequently. Therefore, we evaluated the use of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for species identification. By using 248 nonfermenting culture collection strains composed of 37 genera most relevant to human infections, a reference database was established for MALDI-TOF MS-based species identification according to the manufacturer's recommendations for microflex measurement and MALDI BioTyper software (Bruker Daltonik GmbH, Leipzig, Germany), i.e., by using a mass range of 2,000 to 20,000 Da and a new pattern-matching algorithm. To evaluate the database, 80 blind-coded clinical nonfermenting bacterial strains were analyzed. As a reference method for species designation, partial 16S rRNA gene sequencing was applied. By 16S rRNA gene sequencing, 57 of the 80 isolates produced a unique species identification (≥99% sequence similarity); 11 further isolates gave ambiguous results at this threshold and were rated as identified to the genus level only. Ten isolates were identified to the genus level (≥97% similarity); and two isolates had similarity values below this threshold, were counted as not identified, and were excluded from further analysis. MALDI-TOF MS identified 67 of the 78 isolates (85.9%) included, in agreement with the results of the reference method; 9 were misidentified and 2 were unidentified. The identities of 10 randomly selected strains were 100% correct when three different mass spectrometers and four different cultivation media were used. Thus, MALDI-TOF MS-based species identification of nonfermenting bacteria provided accurate and reproducible results within 10 min without any substantial costs for consumables.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3