Author:
Tsao C.-W.,Song H.-G.,Bartha R.
Abstract
ABSTRACT
Enrichment cultures obtained from soil exposed to benzene, toluene, and xylene (BTX) mineralized benzene and toluene but cometabolized only xylene isomers, forming polymeric residues. This observation prompted us to investigate the metabolism of 14C-labeled BTX hydrocarbons in soil, either individually or as mixtures. BTX-supplemented soil was incubated aerobically for up to 4 weeks in a sealed system that automatically replenished any O2consumed. The decrease in solvent vapors and the production of14CO2 were monitored. At the conclusion of each experiment, 14C distribution in solvent-extractable polymers, biomass, and humic material was determined, obtaining14C mass balances of 85 to 98%. BTX compounds were extensively mineralized in soil, regardless of whether they were presented singly or in combinations. No evidence was obtained for the formation of solvent-extractable polymers from xylenes in soil, but14C distribution in biomass (5 to 10%) and humus (12 to 32%) was unusual for all BTX compounds and especially for toluene and the xylenes. The results suggest that catechol intermediates of BTX degradation are preferentially polymerized into the soil humus and that the methyl substituents of the catechols derived from toluene and especially from xylenes enhance this incorporation. In contrast to inhibitory residues formed from xylene cometabolism in culture, the humus-incorporated xylene residues showed no significant toxicity in the Microtox assay.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献