Effective Extraction of a Heavy Oil Resource by an Environmentally Friendly Green Solvent: Limonene.

Author:

Mathews Tanya Ann1,Azzu Paul1,Cortes Jairo1,Hascakir Berna1

Affiliation:

1. Texas A&M University

Abstract

Abstract Global oil consumption is predicted to increase by 15% from 2021 to 2050. The increasing oil demand and decreasing conventional oil supply force us to find alternate energy supplies. The key to this problem lies with the vast untapped heavy oil and bitumen resources. In this study, we investigate the effectiveness of an environmentally friendly solvent, limonene, in recovering heavy oil. Three core flood experiments representing three different recovery methods were carried out. These include steam flooding (E1), solvent flooding (E2), and solvent-steam co-injections (E3). The green solvent, limonene, is a citrus-based non-toxic solvent. It was chosen due to its high organic solvency and ready availability. Throughout the experiments, steam was injected at a cold water equivalent of 18 ml/min, while limonene was injected at 2 ml/min. The experiments were run with a back pressure of 45-55 psi. The core pack was prepared by filling the pore space of Ottawa sand with a 60% heavy oil sample and 40% water by volume (including water percentage in oil). Produced oil and water samples were collected every 20 min during the experiments. These samples were further analyzed by emulsion characterization to determine emulsion stability and oil quality. Spent rock analyses were done to calculate the displacement efficiency of each of the experiments. In addition, an economic analysis was done to determine the optimal recovery method. Spent rock analysis showed that a sole injection of limonene (E2) had the highest oil recovery. This confirms the high organic solvency of limonene achieved miscible flooding producing about 46 vol % from a total of 60 vol % initial oil. Steam flooding (E1), on the other hand, did not perform as well, producing around 29 vol %. The post-mortem sample from E1 indicated asphaltene precipitation which could have lowered oil recovery. Co-injection of limonene and steam was expected to yield the highest recovery due to the presence of two active drive mechanisms, thermal and miscible flooding. However, it performed comparatively less (41 vol %) than a sole injection of limonene (E2). This is further explained with emulsion characterization results. Experiments involving steam (E1 and E2) revealed strong emulsions in the oil produced, indicating a lower quality. Furthermore, it was seen that the solvent-steam process produced weaker emulsions compared to steam flooding alone. On the other hand, solvent flooding (E2) produced high-quality oil with little to no emulsions. These results along with the economic analysis, indicate that the optimal recovery method would be solvent flooding (E2). Our results prove that limonene is a promising organic solvent. Limonene is non-toxic, readily available, and safe to handle. As a result, it can be a safe green alternative to commonly used toxic organic solvents such as toluene.

Publisher

SPE

Reference50 articles.

1. Application Of Thermal Methods For Heavy Oil Recovery: Phase One;Abdulkadir;International Journal for Advance Research and Development,2017

2. Agency, U. S. E. P. (1986). Test Methods for Evaluating Solid Waste: Volume IA - Laboratory Manual, Physical/Chemical Methods. U.S. Environmental Protection Agency, vol. I.A., 373. Retrieved from https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9100Q2ZI.txt

3. Al-Taq, A., ., 2019. Alternative Environmentally Friendly Solvents for Asphaltenes/Paraffins Removal from Oil Producing Wells. Paper presented at the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE. https://doi.org/10.2118/197697-MS

4. Aleksandrov, D., . (2015). Impact of Frature Orientation on In-Situ Combustion Performance. Paper presented at the SPE Latin American and Caribbean Petroleum Engineering Conference.

5. The Promise And Problems of Enhanced Oil Recovery Methods;Ali;Journal of Canadian Petroleum Technology,1996

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3